Recombinant DNA (rDNA) technology involves joining together DNA molecules from two different species. The recombinant DNA is inserted into a host organism to produce new genetic combinations. This is achieved using restriction enzymes to cut DNA at specific sites and DNA ligase to join the fragments, often incorporating the desired gene into a plasmid vector for cloning.
Recombinant DNA technology, also known as genetic engineering, is the process of creating artificial DNA by combining genetic material from different sources. This technology fundamentally changed biology and medicine by allowing scientists to directly manipulate the genetic code of organisms. The core procedure involves several key steps. First, a gene of interest is identified and isolated from a source organism’s DNA. This is often done using restriction enzymes, which are proteins that act like molecular scissors, cutting DNA at specific recognition sequences. Second, a vector, which is a DNA molecule used to carry the foreign genetic material into another cell, is chosen. Bacterial plasmids—small, circular DNA molecules separate from the bacterial chromosome—are the most common vectors. The same restriction enzyme used to cut out the gene is used to cut open the plasmid vector. This creates compatible ‘sticky ends’ on both the gene and the plasmid. Third, the isolated gene is inserted into the plasmid. The sticky ends of the gene anneal with the complementary sticky ends of the plasmid, and the enzyme DNA ligase is added to permanently join them by forming phosphodiester bonds. The resulting molecule is a recombinant plasmid containing the new gene. Finally, this recombinant vector is introduced into a host organism, typically a bacterium like *E. coli*, through a process called transformation. As the host cells multiply, they replicate the recombinant plasmid along with their own DNA, creating many copies of the inserted gene. The host cells can also transcribe and translate the foreign gene to produce the desired protein, such as human insulin produced in bacteria.
UNESCO Nomenclature: 2406
– Molecular Biology
Taper
Processus chimique
Perturbation
Révolutionnaire
Usage
Utilisation généralisée
Précurseurs
discovery of DNA as genetic material
elucidation of the DNA double helix structure
discovery of plasmids in bacteria
discovery and characterization of restriction enzymes by Werner Arber, Daniel Nathans, and Hamilton Smith
discovery of DNA ligase
Applications
production of synthetic human insulin for diabetics
creation of genetically modified organisms (GMOs)
production of vaccines (e.g., hepatitis B vaccine)
gene therapy
production of clotting factors for hemophilia
Brevets:
US4237224
Idées d'innovations potentielles
!niveaux !!! Adhésion obligatoire
Vous devez être membre de l'association pour accéder à ce contenu.
DISPONIBLE POUR DE NOUVEAUX DÉFIS Ingénieur mécanique, chef de projet, ingénierie des procédés ou R&D
Disponible pour un nouveau défi dans un court délai. Contactez-moi sur LinkedIn Intégration électronique métal-plastique, Conception à coût réduit, BPF, Ergonomie, Appareils et consommables de volume moyen à élevé, Production allégée, Secteurs réglementés, CE et FDA, CAO, Solidworks, Lean Sigma Black Belt, ISO 13485 médical
Nous recherchons un nouveau sponsor
Votre entreprise ou institution est dans le domaine de la technique, de la science ou de la recherche ? > envoyez-nous un message <
Recevez tous les nouveaux articles Gratuit, pas de spam, email non distribué ni revendu
ou vous pouvez obtenir votre adhésion complète - gratuitement - pour accéder à tout le contenu restreint >ici<
Inventions, innovations et principes techniques connexes