Maison » Théorème fondamental de l'arithmétique

Théorème fondamental de l'arithmétique

1801
  • Carl Friedrich Gauss
Study room with books and chalkboard illustrating the Fundamental Theorem of Arithmetic in number theory.

This theorem states that every integer greater than 1 is either a prime number or can be uniquely represented as a product of prime numbers, disregarding the order of the factors. For example, [latex]1200 = 2^4 \times 3^1 \times 5^2[/latex]. This unique factorization is a cornerstone of number theory, providing a fundamental multiplicative structure for the integers.

The Fundamental Theorem of Arithmetic, also called the unique factorization theorem, consists of two main assertions for any integer [latex]n > 1[/latex]: first, that [latex]n[/latex] can be written as a product of prime numbers (the existence part), and second, that this product is unique, apart from the order of the factors (the uniqueness part). The existence of a prime factorization is typically proven using strong induction. The base case is that 2 is prime. For the inductive step, assume every integer up to [latex]k[/latex] has a prime factorization. For [latex]k+1[/latex], it is either prime (and we are done) or composite. If it is composite, it can be written as a product of two smaller integers, [latex]a \times b[/latex]. By the induction hypothesis, both [latex]a[/latex] and [latex]b[/latex] have prime factorizations, and their product gives a prime factorization for [latex]k+1[/latex].

The uniqueness part is more subtle and relies critically on Euclid’s Lemma, which states that if a prime [latex]p[/latex] divides a product [latex]ab[/latex], then [latex]p[/latex] must divide either [latex]a[/latex] or [latex]b[/latex]. To prove uniqueness, assume an integer [latex]n[/latex] has two different prime factorizations: [latex]n = p_1 p_2 cdots p_k = q_1 q_2 cdots q_m[/latex]. The prime [latex]p_1[/latex] divides the left side, so it must divide the right side. By Euclid’s Lemma, [latex]p_1[/latex] must divide one of the [latex]q_j[/latex]. Since all [latex]q_j[/latex] are prime, [latex]p_1[/latex] must be equal to some [latex]q_j[/latex]. We can then cancel these terms from both sides and repeat the process, eventually showing that the two factorizations must be identical. While elements of this theorem appeared in Euclid’s *Elements* (c. 300 BC), Carl Friedrich Gauss provided the first clear statement and rigorous proof in his 1801 work *Disquisitiones Arithmeticae*, solidifying its foundational role in number theory.

UNESCO Nomenclature: 1101
– Pure mathematics

Taper

Système abstrait

Perturbation

Fondamentaux

Usage

Utilisation généralisée

Précurseurs

  • Euclid’s proof of the infinitude of primes
  • Euclid’s Lemma
  • Le concept de nombres premiers et de divisibilité dans les mathématiques grecques antiques
  • Développement de l'induction mathématique comme technique de preuve

Applications

  • cryptographie (e.g., RSA algorithm)
  • algorithmes pour trouver le plus grand diviseur commun (PGCD)
  • résolution d'équations diophantiennes
  • développement de l'algèbre abstraite
  • algorithmes informatiques pour la factorisation d'entiers

Brevets:

NA

Idées d'innovations potentielles

!niveaux !!! Adhésion obligatoire

Vous devez être membre de l'association pour accéder à ce contenu.

S’inscrire maintenant

Vous êtes déjà membre ? Connectez-vous ici
Related to: fundamental theorem of arithmetic, prime factorization, unique factorization, number theory, integer, prime number, Euclide, Gauss, canonical representation, multiplicative structure.

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

DISPONIBLE POUR DE NOUVEAUX DÉFIS
Ingénieur mécanique, chef de projet, ingénierie des procédés ou R&D
Développement de produits efficace

Disponible pour un nouveau défi dans un court délai.
Contactez-moi sur LinkedIn
Intégration électronique métal-plastique, Conception à coût réduit, BPF, Ergonomie, Appareils et consommables de volume moyen à élevé, Production allégée, Secteurs réglementés, CE et FDA, CAO, Solidworks, Lean Sigma Black Belt, ISO 13485 médical

Nous recherchons un nouveau sponsor

 

Votre entreprise ou institution est dans le domaine de la technique, de la science ou de la recherche ?
> envoyez-nous un message <

Recevez tous les nouveaux articles
Gratuit, pas de spam, email non distribué ni revendu

ou vous pouvez obtenir votre adhésion complète - gratuitement - pour accéder à tout le contenu restreint >ici<

Contexte historique

(si la date est inconnue ou non pertinente, par exemple « mécanique des fluides », une estimation arrondie de son émergence notable est fournie)

Inventions, innovations et principes techniques connexes

Retour en haut

Vous aimerez peut-être aussi