
Les outils d'IA en ligne transforment rapidement l'ingénierie mécanique en augmentant les capacités humaines en matière de conception et d'analyse, fabricationet la maintenance. Ces systèmes d'IA peuvent traiter de grandes quantités de données, identifier des modèles complexes et générer des solutions nouvelles beaucoup plus rapidement que les méthodes traditionnelles. Par exemple, l'IA peut vous aider à optimiser les conceptions en termes de performance et de fabricabilité, à accélérer les simulations complexes, à prédire les propriétés des matériaux et à automatiser un large éventail de tâches analytiques.
The prompts provided below will for example help on generative design, accelerate simulations (FEA/CFD), help on predictive maintenance where AI analyzes sensor data from machinery to forecast potential failures, enabling proactive servicing and minimizing downtime, help on material selection and much more.
- Cette page est spécifique à un domaine. Si nécessaire, vous pouvez effectuer une recherche complète sur tous les domaines et tous les critères dans notre >. Répertoire d'invites AI <, dédié à conception de produits et innovation.
- Compte tenu des ressources et du temps disponibles sur le serveur, les invites elles-mêmes sont réservées aux membres enregistrés et ne sont pas visibles ci-dessous si vous n'êtes pas connecté. Vous pouvez vous inscrire, 100% gratuit :
Adhésion requise
Vous devez être membre du site pour accéder à ce contenu.
- Modélisation prédictive
- Ingénierie mécanique
Invitation à l'IA à Outil de prévision de la performance des systèmes
- Évaluation de l'impact environnemental, Technologies de l'environnement, Machine Learning, Algorithmes de maintenance prédictive, Gestion de la qualité, Statistical Analysis, Contrôle statistique des processus (CSP), Conception du système
Cette invite demande à l'IA de prévoir les performances futures d'un système mécanique sur la base de données opérationnelles historiques et de facteurs environnementaux fournis au format JSON. L'IA produit une prévision de série temporelle avec des intervalles de confiance.
Sortie :
- JSON
- ne nécessite pas d'Internet en direct
- Champs : {historical_data_json} {environmental_factors_json}
Given the historical operational data: {historical_data_json} and environmental factors data: {environmental_factors_json}, forecast the mechanical system's performance over the next 12 months. Use appropriate time series forecasting methods and provide confidence intervals for predictions. Structure the output as a JSON object with keys: 'month', 'predicted_performance', 'confidence_interval_lower', and 'confidence_interval_upper'. Include brief comments on model choice and assumptions.
- Meilleur pour : Meilleur pour anticiper le comportement d'un système mécanique dans des conditions variables
- Évaluation des risques et analyse de la sécurité
- Ingénierie mécanique
Invitation à l'IA à Stratégies d'atténuation des défaillances dues aux vibrations
- Amélioration continue, Analyse des défaillances, Génie mécanique, Algorithmes de maintenance prédictive, Amélioration des processus, Contrôle de qualité, Gestion des risques, Analyse des vibrations
Suggère et élabore des stratégies d'atténuation potentielles pour les défaillances induites par les vibrations dans des équipements mécaniques spécifiques, sur la base d'un résumé des données relatives aux vibrations et des tentatives actuelles. Cela aide les ingénieurs à trouver des solutions pour améliorer la fiabilité. Le résultat est une liste de mots-clés.
Sortie :
- Markdown
- ne nécessite pas d'Internet en direct
- Champs : {equipment_description_text} {vibration_data_summary_text} {current_mitigation_attempts_text}
Act as a Vibration Analysis and Reliability Engineering Consultant.
Your TASK is to propose and elaborate on potential mitigation strategies for vibration-induced failures in the `{equipment_description_text}`
considering the `{vibration_data_summary_text}` and any `{current_mitigation_attempts_text}`.
You should suggest a range of solutions
from simple to more complex.
**1. Input Analysis**:
* `{equipment_description_text}`: Description of the affected equipment and its function (e.g.
'Centrifugal pump
Model XYZ
used for cooling water circulation'
'Large industrial fan mounted on steel frame'
'Pipeline section experiencing flow-induced vibration').
* `{vibration_data_summary_text}`: Key characteristics of the problematic vibration (e.g.
'High amplitude at 1x rotational speed (unbalance)'
'Dominant frequency matches nearby machine's operating speed (external source)'
'Broadband random vibration with peaks near structural resonances'
'Flow-induced vibration at 50-60 Hz'). Include specific frequencies and amplitudes if known.
* `{current_mitigation_attempts_text}`: What
if anything
has already been tried and its outcome (e.g.
'Attempted balancing
reduced vibration by 20% but still too high'
'Added stiffeners to frame
shifted resonance but problem persists at new frequency'
'None attempted yet').
**2. Mitigation Strategy Brainstorming & Elaboration**: Based on the inputs
propose several distinct strategies. For each strategy:
* **Strategy Name/Type**: (e.g.
Source Modification
Path Interruption
System Modification
Damping Treatment).
* **Specific Action(s)**: Detail the concrete steps or changes involved.
* **Principle of Operation**: Explain HOW this strategy reduces vibration or its effects in the context of the `{vibration_data_summary_text}`.
* **Applicability/Suitability**: How well does this strategy address the likely root cause suggested by the vibration data? (e.g.
If unbalance is indicated
balancing is highly applicable).
* **Potential Pros**: Advantages of this approach.
* **Potential Cons/Challenges**: Disadvantages
cost
complexity
potential side effects.
* **Consideration given `{current_mitigation_attempts_text}`**: How does this build upon or differ from what was already tried?
**Categories of Strategies to Consider (examples
tailor to the problem)**:
* **Source Treatment**:
* Balancing (for rotating machinery).
* Alignment (for coupled machines).
* Modifying operating speed to avoid resonance.
* Reducing fluid flow velocity or changing flow path (for FIV).
* **Path Treatment**:
* Isolation: Using resilient mounts (elastomeric
spring isolators) to decouple the source from the receiver.
* Barriers: Enclosures for noise/vibration.
* **System Response Modification**:
* Stiffening: Adding braces or gussets to shift natural frequencies away from excitation frequencies.
* Mass Addition: Adding mass to shift natural frequencies.
* Damping:
* Applied Damping Treatments (e.g.
viscoelastic layers
constrained layer damping).
* Tuned Mass Dampers (TMDs) for specific problematic frequencies.
* Active Vibration Control (more complex
using sensors
actuators
and controllers).
**3. Output Format (Markdown)**:
* **Title**: Vibration Mitigation Strategies for `{equipment_description_text}`.
* **1. Summary of Vibration Problem**: Briefly restate the core issue based on inputs.
* **2. Proposed Mitigation Strategies**: For each strategy:
* `### Strategy X: [Strategy Name/Type]`
* `**Specific Actions:**`
* `**Principle of Operation:**`
* `**Applicability/Suitability:**`
* `**Potential Pros:**`
* `**Potential Cons/Challenges:**`
* `**Relation to Previous Attempts:**`
* **3. General Recommendations & Next Steps**: Suggest a logical approach to selecting and implementing strategies (e.g.
'Start with source treatment if possible'
'Consider simulation or modal analysis to predict effectiveness of structural modifications'
'Implement incrementally and monitor results').
**IMPORTANT**: The strategies should be technically sound and relevant to the described problem. The AI should aim to provide a range of options suitable for different levels of complexity and cost.
- Idéal pour : Aider les ingénieurs mécaniciens à identifier et à évaluer diverses stratégies d'atténuation des défaillances dues aux vibrations en fonction du type d'équipement et des caractéristiques des vibrations.
- Évaluation des risques et analyse de la sécurité
- Ingénierie mécanique
Invitation à l'IA à Contrôle de la conformité de la sécurité de la conception de la machine
- Conception pour la fabrication (DfM), Conception pour la durabilité, Évaluation de l'impact environnemental, Ergonomie, Assurance qualité, Contrôle de qualité, Gestion des risques, Safety
Évalue les caractéristiques d'une conception de machine par rapport à des extraits de clauses de normes de sécurité pertinentes fournies par l'utilisateur, afin d'identifier les zones de non-conformité potentielles. Cela permet de concevoir des machines plus sûres dès le départ. Le résultat est une liste de contrôle de type "markdown".
Sortie :
- Markdown
- ne nécessite pas d'Internet en direct
- Champs : {machine_design_features_description_text} {safety_standard_clauses_text} (texte des normes de sécurité) {country_of_operation_for_context}
Act as a Machinery Safety Specialist with expertise in CE Marking/OSHA compliance (or general machinery safety principles).
Your TASK is to perform a preliminary safety compliance check of the described `{machine_design_features_description_text}` against the provided `{safety_standard_clauses_text}`. Consider the general safety expectations for the `{country_of_operation_for_context}` if it influences interpretation (e.g. EU vs USA).
**1. Input Analysis**:
* `{machine_design_features_description_text}`: A textual description of the machine's key design features
safety components (guards
E-stops
interlocks)
operational modes
and human interaction points.
* `{safety_standard_clauses_text}`: Text containing specific clauses or requirements excerpted from relevant safety standard(s) (e.g.
snippets from ISO 12100
ISO 13849-1
IEC 60204-1
or specific Type-C standards). The user provides these excerpts.
* `{country_of_operation_for_context}`: The intended country or region of operation (e.g.
'European Union'
'USA'
'China')
as general safety philosophies can differ.
**2. Compliance Check Methodology**: For EACH provided clause in `{safety_standard_clauses_text}`:
* **Understand Clause Requirement**: Interpret the main safety objective or requirement of the clause.
* **Compare with Design Features**: Assess the `{machine_design_features_description_text}` against this specific requirement.
* Does the design appear to meet the requirement?
* Are there features that clearly violate or contradict the requirement?
* Is there insufficient information in the design description to make a judgment?
* **Identify Potential Gaps or Non-Compliances**: Clearly state where the design may fall short.
* **Suggest Areas for Improvement or Verification**: What specific aspects of the design should be reviewed
modified
or further documented to ensure compliance with this clause?
**3. Output Format (Markdown)**:
* **Title**: Preliminary Safety Compliance Check: [Machine Name/Type from description] vs. Provided Standard Clauses.
* **Context**: Machine intended for operation in: `{country_of_operation_for_context}`.
* **Compliance Checklist**: For each clause provided by the user:
* `---`
* `**Clause Reference:** [Quote or clearly reference the clause from {safety_standard_clauses_text}]`
* `**Clause Summary/Objective:** [Your brief interpretation of what the clause aims to achieve]`
* `**Assessment against Machine Design ({machine_design_features_description_text}):**`
* ` - **Compliance Status:** [Compliant / Potentially Non-Compliant / Insufficient Information / Partially Compliant]`
* ` - **Observations/Reasoning:** [Explain your assessment based on the design features. Be specific.]`
* ` - **Potential Gaps Identified (if any):**`
* ` - Gap 1: ...`
* ` - Gap 2: ...`
* ` - **Recommendations/Questions for Design Team:**`
* ` - Recommendation 1: e.g.
'Verify guard opening sizes against EN ISO 13857 for this hazard zone.'`
* ` - Question 1: e.g.
'Is the emergency stop a Category 0 or Category 1 stop as per IEC 60204-1?'`
* `---`
* **Overall Disclaimer**: `This is a preliminary assessment based SOLELY on the provided design description and standard excerpts. A full compliance assessment requires a detailed review of the complete machine
its documentation
a full risk assessment
and consultation of the complete unabridged standards.`
**IMPORTANT**: The AI is NOT certifying compliance. It is identifying potential areas of concern or questions based on a limited comparison. The assessment should be objective and constructive
aiming to help the design team improve safety. If a clause is very complex or requires deep domain-specific knowledge not available
it's okay to state that a specialist review is needed for that point.
- Idéal pour : Faciliter les examens préliminaires de conformité en matière de sécurité en vérifiant les caractéristiques des machines décrites par rapport à des clauses spécifiques des normes de sécurité pertinentes fournies par l'utilisateur.
- Considérations éthiques et analyse d'impact
- Ingénierie mécanique
Invitation à l'IA à Évaluation des risques éthiques pour les projets mécaniques
- Génie de l'environnement, Impact environnemental, Génie mécanique, Gestion de projet, Gestion des risques, Safety, Pratiques de durabilité, Développement durable
Cette question guide l'IA dans l'analyse des risques éthiques et des conséquences sociétales d'un projet d'ingénierie mécanique spécifique, en tenant compte des facteurs environnementaux, de sécurité et d'impact social. Elle exige une description détaillée du projet et de l'application prévue afin de fournir une évaluation structurée des risques éthiques avec des recommandations de mesures d'atténuation.
Sortie :
- Texte
- ne nécessite pas d'Internet en direct
- Champs : {project_description} {intended_application}
Analyze the following mechanical engineering project for potential ethical risks and societal consequences. The project description is: {project_description}. The intended application is: {intended_application}. Please provide a detailed ethical risk assessment that includes: 1) Identification of possible environmental impacts 2) Safety concerns for users and communities 3) Social and economic consequences 4) Recommendations for mitigating identified risks. Format your response using clear headings and bullet points for each section. Capitalize important keywords and use markdown for readability.
- Meilleur pour : Meilleur pour l'évaluation des défis éthiques et des impacts sociétaux des nouveaux projets d'ingénierie mécanique
- Considérations éthiques et analyse d'impact
- Ingénierie mécanique
Invitation à l'IA à Générateur de rapports sur le développement durable et l'impact environnemental
- Génie de l'environnement, Impact environnemental, Analyse du cycle de vie (ACV), Analyse d'impact du cycle de vie (ACIV), Indicateurs de durabilité, Développement durable, Innovation durable, Matériaux durables, Pratiques durables
Cette invite demande à l'IA de générer un rapport complet sur le développement durable et l'impact environnemental d'une technologie ou d'un processus d'ingénierie mécanique donné, en tenant compte de l'analyse du cycle de vie, des matériaux utilisés et de la consommation d'énergie. L'utilisateur saisit le nom de la technologie et les paramètres clés.
Sortie :
- Markdown
- ne nécessite pas d'Internet en direct
- Champs : {nom_technologie} {paramètres_clés}
Generate a detailed sustainability and environmental impact report for the mechanical engineering technology named {technology_name}. Use the following key parameters to guide your analysis: {key_parameters}. Include sections on: 1) Lifecycle environmental impact including raw materials sourcing and disposal 2) Energy consumption and efficiency 3) Potential for recycling or reuse 4) Recommendations for improving sustainability. Use markdown formatting with headings, bullet points, and bold important terms for clarity.
- Meilleur pour : Meilleur pour la production d'une documentation structurée sur l'impact environnemental des innovations en matière d'ingénierie
- Considérations éthiques et analyse d'impact
- Ingénierie mécanique
Invitation à l'IA à Analyse des implications politiques des innovations mécaniques
- Impact environnemental, Technologies de l'environnement, Stratégie d'innovation, Gestion de la qualité, Règlement, Gestion des risques, Normes, Pratiques de durabilité, Développement durable
Cette invite demande à l'IA d'évaluer les implications politiques et réglementaires du déploiement d'une nouvelle innovation en ingénierie mécanique. L'utilisateur fournit la description de l'innovation et la région ou le pays cible afin d'adapter l'analyse à la législation et aux normes pertinentes.
Sortie :
- Texte
- nécessite l'utilisation d'Internet en direct
- Champs : {innovation_description} {target_region}
Evaluate the policy and regulatory implications of the following mechanical engineering innovation: {innovation_description}. Focus your analysis on the target region or country: {target_region}. Outline existing regulations, standards, and compliance requirements that could affect deployment. Provide recommendations on policy adaptation or lobbying strategies to facilitate innovation adoption. Use numbered lists and clear subheadings to organize your response.
- Le meilleur pour : Meilleur pour comprendre et naviguer dans les cadres juridiques et politiques affectant les projets d'ingénierie mécanique
- Considérations éthiques et analyse d'impact
- Ingénierie mécanique
Invitation à l'IA à Générateur de scénarios de dilemmes éthiques pour les ingénieurs
- Amélioration continue, Conception pour la durabilité, Principes fondamentaux de l'ingénierie, Impact environnemental, Conception centrée sur l'humain, Innovation, Génie mécanique, Gestion des risques
Cette invite demande à l'IA de créer des scénarios réalistes de dilemmes éthiques spécifiquement adaptés aux ingénieurs en mécanique, sur la base d'un sujet ou d'une technologie donné(e). Elle aide les professionnels à anticiper et à discuter des situations difficiles nécessitant une prise de décision éthique.
Sortie :
- JSON
- ne nécessite pas d'Internet en direct
- Champs : {topic}
Generate 3 detailed ethical dilemma scenarios related to the mechanical engineering topic: {topic}. For each scenario, include: 1) A brief description of the situation 2) The conflicting ethical principles involved 3) Potential consequences of different decisions 4) Suggested approaches to resolve the dilemma. Format the output as a JSON array with keys: 'scenario', 'ethical_conflict', 'consequences', and 'resolution'. Capitalize key terms in the text for emphasis.
- Meilleur pour : Meilleur pour la formation et la préparation des ingénieurs à gérer les défis éthiques dans leur travail
- Traduction et adaptation linguistique
- Ingénierie mécanique
Invitation à l'IA à Traduction des spécifications techniques
- Documentation de conception, Conception pour la fabrication (DfM), Principes fondamentaux de l'ingénierie, Génie mécanique, Amélioration des processus, Développement de produits, Assurance qualité, Gestion de la qualité
Traduire un bloc de spécifications techniques pour un composant ou un système mécanique d'une langue source vers une langue cible en veillant à l'exactitude de la terminologie. Cela facilite la collaboration internationale et la documentation des produits. Le résultat est le texte traduit.
Sortie :
- Texte
- ne nécessite pas d'Internet en direct
- Champs : {source_language_name_or_code} {target_language_name_or_code} {technical_specifications_text}
Act as a Technical Translator specializing in Mechanical Engineering documentation.
Your TASK is to translate the provided `{technical_specifications_text}` from `{source_language_name_or_code}` to `{target_language_name_or_code}`.
You MUST prioritize technical accuracy and the correct translation of specialized mechanical engineering terminology.
**1. Input Parameters**:
* `{source_language_name_or_code}`: The language of the input text (e.g.
'English'
'German'
'zh-CN').
* `{target_language_name_or_code}`: The language into which the text should be translated (e.g.
'Spanish'
'French'
'ja-JP').
* `{technical_specifications_text}`: The block of text containing technical specifications. This may include parameters
material callouts
performance data
testing standards
etc.
**2. Translation Process**:
* **Understand Context**: Parse the `{technical_specifications_text}` to understand the component/system being described.
* **Terminology Management**:
* Identify key technical terms
units of measure
and industry-specific jargon.
* Translate these terms with high fidelity
using established technical equivalents in the `{target_language_name_or_code}`. AVOID literal translations that might be technically incorrect.
* Ensure consistency in terminology throughout the translated text.
* **Preserve Meaning and Structure**:
* Translate not just words
but the precise technical meaning of each specification point.
* Maintain the original formatting (e.g.
bullet points
numbered lists
table-like structures if discernible in plain text) as much as possible in the translated output.
* **Units of Measure**:
* If units are present (e.g.
mm
MPa
kg)
generally retain them as they are
as these are often internationally understood. If conversion is explicitly part of a localization requirement (not requested here but good to be aware of)
that would be a separate instruction. For this task
keep units as in source unless the unit name itself needs translation (e.g.
'pounds' to 'kilograms' is a conversion
but if the word 'pounds' appeared it would be translated if appropriate). Assume standard SI/metric units are preferred if ambiguity arises and context suggests a technical document for global use.
**3. Output**:
* The output MUST be the translated text in the `{target_language_name_or_code}` ONLY.
* Do NOT include any of the original `{technical_specifications_text}` unless it's part of a bilingual presentation format (which is not requested here).
* Do NOT include any comments or annotations unless specifically part of the original text.
**IMPORTANT**: Accuracy is PARAMOUNT. If a term is highly ambiguous and could have multiple technical translations
choose the one most commonly accepted in general mechanical engineering for the `{target_language_name_or_code}`. If you are an AI with limitations in translation quality for very specific jargon
you might add a disclaimer if appropriate
but the primary goal is the best possible technical translation. Strive for a natural-sounding translation in the target language
as if written by a native technical expert.
- Idéal pour : Traduire avec précision les spécifications techniques des composants mécaniques d'une langue à l'autre en conservant la terminologie et la signification correctes de l'ingénierie pour une utilisation internationale.
- Assistance à la rédaction de propositions de subventions et de documents scientifiques
- Ingénierie mécanique
Invitation à l'IA à Assistant de rédaction de résumé de proposition de subvention
- Innovation, Génie mécanique, Gestion de projet, Recherche et développement
Cette invite aide les ingénieurs en mécanique à rédiger un résumé clair et convaincant pour une proposition de subvention. L'utilisateur indique l'objet de la recherche, les objectifs et l'impact escompté. L'IA renvoie un résumé structuré adapté aux demandes de financement.
Sortie :
- Texte
- ne nécessite pas d'Internet en direct
- Champs : {research_focus} {objectifs} {impact_attendu}
Draft a grant proposal abstract for a mechanical engineering research project with the following details: Research Focus: {research_focus}. Objectives: {objectives}. Expected Impact: {expected_impact}. The abstract should be concise (150-250 words), clearly state the problem, methodology overview, and significance. Use formal, persuasive language and include keywords relevant to mechanical engineering funding agencies. Format the abstract in a single well-structured paragraph.
- Le meilleur pour : Le meilleur pour générer des résumés de proposition soignés afin d'améliorer le succès du financement
- Traduction et adaptation linguistique
- Ingénierie mécanique
Invitation à l'IA à Simplification des résumés de recherche
- Fabrication additive, Conception pour la fabrication additive (DfAM), Pensée conceptuelle, Génie mécanique, Recherche et développement, Expérience utilisateur (UX)
Simplifie un résumé de document de recherche complexe sur un sujet d'ingénierie mécanique dans un langage clair adapté à un public d'ingénieurs généralistes ou à une communication avec des non-spécialistes. Il vise à transmettre le message principal et la signification sans jargon excessif. Le résultat est un texte.
Sortie :
- Texte
- ne nécessite pas d'Internet en direct
- Champs : {research_paper_abstract_text} {target_audience_description}
Act as a Science Communicator with a background in Mechanical Engineering.
Your TASK is to rewrite the provided `{research_paper_abstract_text}` into a simplified version that is clear
concise
and understandable to a `{target_audience_description}`.
The goal is to retain the core scientific message
findings
and significance while minimizing technical jargon.
**1. Input Details**:
* `{research_paper_abstract_text}`: The original abstract from a scientific or engineering research paper.
* `{target_audience_description}`: A description of the intended audience for the simplified version (e.g.
'undergraduate engineering students from other disciplines'
'project managers with basic technical literacy'
'marketing team for a tech product'
'general public interested in technology').
**2. Simplification Process**:
* **Identify Core Message**: Read the `{research_paper_abstract_text}` to thoroughly understand:
* What problem was addressed? (Background/Motivation)
* What was the main approach or method used? (Methodology)
* What were the key findings? (Results)
* What is the significance or implication of these findings? (Conclusion/Impact)
* **Jargon Reduction**:
* Identify highly specialized technical terms and acronyms.
* Replace them with simpler synonyms or short explanations.
* If a technical term is ESSENTIAL and cannot be easily replaced
provide a brief parenthetical or embedded explanation upon its first use.
* **Sentence Structure**:
* Break down long
complex sentences into shorter
more digestible ones.
* Use active voice where possible.
* **Focus and Clarity**:
* Remove or condense less critical details or overly nuanced points that are not essential for the `{target_audience_description}`.
* Focus on conveying the 'big picture' and the practical relevance if any.
* Use analogies or relatable examples if appropriate for the audience
without oversimplifying to the point of inaccuracy.
* **Tone and Style**:
* Adjust the tone to be engaging and accessible for the `{target_audience_description}`.
* Avoid condescending language.
**3. Output Format**:
* The output MUST be the simplified abstract as a single block of plain text.
* It should typically be shorter than or roughly the same length as the original abstract
but easier to read.
* Start with a sentence that clearly states the main topic or purpose in simple terms.
**Example Structure for Simplified Abstract (internal thought process
not rigid output format)**:
* *The Big Problem:* [Start by explaining the general problem this research addresses in simple terms.]
* *What Researchers Did:* [Describe their main activity or method simply.]
* *What They Discovered:* [State the most important findings clearly.]
* *Why It Matters:* [Explain the significance or potential application/benefit for the target audience.]
**IMPORTANT**: The simplified version MUST remain factually accurate and not misrepresent the original research. The level of simplification should be appropriate for the specified `{target_audience_description}`.
- Idéal pour : Rendre accessible la recherche complexe en ingénierie mécanique en simplifiant les résumés techniques pour un public plus large, comme les étudiants en gestion ou les non-spécialistes.
Sommes-nous en train de supposer que l'IA peut toujours générer les meilleurs messages en génie mécanique ? Comment sont-elles générées ?
L'IA va-t-elle rendre les ingénieurs humains superflus ?
Articles Similaires
Dernières publications et brevets sur les MXènes
Dernières publications et brevets sur les points quantiques
Dernières publications et brevets sur les pérovskites
Dernières publications et brevets sur le graphène
Plus de 45 astuces scientifiques pour les jeux et le marketing : astuces basées sur les données et les statistiques
Utiliser ou abuser de 25 biais cognitifs dans la conception et la fabrication de produits