Maison » Meilleures invites d'IA pour l'ingénierie mécanique

Meilleures invites d'IA pour l'ingénierie mécanique

L'IA encourage l'ingénierie mécanique
Ai ingénierie mécanique
Les outils pilotés par l'intelligence artificielle révolutionnent l'ingénierie mécanique en améliorant l'optimisation de la conception, la vitesse de simulation, la maintenance prédictive et la sélection des matériaux grâce à l'analyse avancée des données et à la reconnaissance des formes.

Les outils d'IA en ligne transforment rapidement l'ingénierie mécanique en augmentant les capacités humaines en matière de conception et d'analyse, fabricationet la maintenance. Ces systèmes d'IA peuvent traiter de grandes quantités de données, identifier des modèles complexes et générer des solutions nouvelles beaucoup plus rapidement que les méthodes traditionnelles. Par exemple, l'IA peut vous aider à optimiser les conceptions en termes de performance et de fabricabilité, à accélérer les simulations complexes, à prédire les propriétés des matériaux et à automatiser un large éventail de tâches analytiques.

Les invites fournies ci-dessous aideront par exemple à la conception générative, à l'accélération des simulations (FEA/CFD), à la maintenance prédictive où l'IA analyse les données des capteurs des machines pour prévoir les défaillances potentielles, ce qui permet un entretien proactif et minimise les temps d'arrêt, à la sélection des matériaux et à bien d'autres choses encore.

  • Compte tenu des ressources et du temps disponibles sur le serveur, les invites elles-mêmes sont réservées aux membres enregistrés et ne sont pas visibles ci-dessous si vous n'êtes pas connecté. Vous pouvez vous inscrire, 100% gratuit : 

Adhésion requise

Vous devez être membre du site pour accéder à ce contenu.

Voir les niveaux d’adhésion

Vous êtes déjà membre ? Connectez-vous ici

Invitation à l'IA à Schéma d'évaluation des incidences sur l'environnement au cours du cycle de vie

Décrit les principales étapes et considérations à prendre en compte pour réaliser une évaluation de l'impact environnemental du cycle de vie (ACV) d'un nouveau produit mécanique. Cette invite aide les ingénieurs à structurer leurs efforts en matière d'ACV en identifiant les données nécessaires, les catégories d'impact et les possibilités d'atténuation. Le résultat est un document de démarquage détaillant le plan de l'ACV.

Sortie : 

				
					Act as an Environmental Engineering Consultant specializing in Lifecycle Assessments (LCA) for mechanical products.
Your TASK is to generate a structured OUTLINE for conducting a Lifecycle Environmental Impact Assessment for `{product_name_and_function}`.
Consider the product's composition from `{bill_of_materials_csv}` (CSV string: 'Material
Quantity
Source_Region_if_known')
 its `{manufacturing_processes_overview_text}`
 and its `{expected_use_phase_and_disposal_text}`.
You MAY use live internet to identify common impact assessment tools
 databases (e.g.
 Ecoinvent
 GaBi)
 and relevant ISO standards (e.g.
 ISO 14040/14044).

**LCA OUTLINE STRUCTURE (MUST be Markdown format):**

**1. Goal and Scope Definition**
    *   **1.1. Purpose of the LCA**: (e.g.
 Identify environmental hotspots
 Compare with alternative designs
 Eco-labeling).
    *   **1.2. Product System Description**: Define `{product_name_and_function}`.
    *   **1.3. Functional Unit**: Quantified performance of the product system (e.g.
 'Provide X amount of torque for Y hours'
 'Manufacture Z parts').
    *   **1.4. System Boundaries**: Detail what stages are INCLUDED and EXCLUDED (Cradle-to-Grave
 Cradle-to-Gate
 Gate-to-Gate). Justify exclusions.
        *   Raw Material Acquisition (based on `{bill_of_materials_csv}`).
        *   Manufacturing & Assembly (based on `{manufacturing_processes_overview_text}`).
        *   Distribution/Transportation.
        *   Use Phase (based on `{expected_use_phase_and_disposal_text}`).
        *   End-of-Life (Disposal/Recycling
 based on `{expected_use_phase_and_disposal_text}`).
    *   **1.5. Allocation Procedures** (if dealing with multi-output processes or recycled content).
    *   **1.6. Impact Categories Selection**: (e.g.
 Global Warming Potential (GWP
 kg CO2 eq)
 Acidification Potential
 Eutrophication Potential
 Ozone Depletion Potential
 Smog Formation
 Resource Depletion
 Water Footprint). Select relevant categories for this product type.
    *   **1.7. LCA Methodology & Software/Databases**: (e.g.
 CML
 ReCiPe
 TRACI. Mention common software like SimaPro
 GaBi
 openLCA
 and databases like Ecoinvent).

**2. Life Cycle Inventory Analysis (LCI)**
    *   **2.1. Data Collection Plan**: For each life cycle stage:
        *   Identify required input data (energy
 materials
 water
 transport) and output data (emissions
 waste).
        *   Data sources (primary vs. secondary
 from `{bill_of_materials_csv}`
 literature
 databases).
    *   **2.2. Data Quality Requirements** (e.g.
 precision
 completeness
 representativeness).

**3. Life Cycle Impact Assessment (LCIA)**
    *   **3.1. Classification**: Assigning LCI results to selected impact categories.
    *   **3.2. Characterization**: Calculating category indicator results (e.g.
 converting greenhouse gas emissions into CO2 equivalents).
    *   **3.3. Normalization (Optional)**: Expressing impact indicator results relative to a reference value.
    *   **3.4. Weighting (Optional
 and to be used with caution)**: Assigning weights to different impact categories.

**4. Life Cycle Interpretation**
    *   **4.1. Identification of Significant Issues**: Hotspot analysis.
    *   **4.2. Evaluation**: Completeness
 sensitivity
 and consistency checks.
    *   **4.3. Conclusions
 Limitations
 and Recommendations for Mitigation** (e.g.
 material substitution
 process optimization
 design for disassembly).

**IMPORTANT**: This outline should guide an engineer in planning a comprehensive LCA. Emphasize the iterative nature of LCA and the importance of data quality.
							

Invitation à l'IA à Générateur de glossaire multilingue

Génère un glossaire de termes d'ingénierie mécanique fournis par l'utilisateur dans plusieurs langues cibles. Cela permet de créer une documentation et une communication multilingues cohérentes. Le résultat est un glossaire au format CSV.

Sortie : 

				
					Act as an Engineering Lexicographer and Terminology Specialist.
Your TASK is to create a multilingual glossary for a list of English mechanical engineering terms provided in `{technical_terms_list_english_csv}`
 translating them into the languages specified in `{target_languages_iso_codes_csv}`.
You MUST ensure high-quality technical translations.

**1. Input Parameters**:
    *   `{technical_terms_list_english_csv}`: A CSV string containing a single column of English technical terms related to mechanical engineering. The first row can be a header like 'English_Term'.
      Example: `English_Term
Stress
Strain
Torque
Finite Element Analysis
Heat Exchanger`
    *   `{target_languages_iso_codes_csv}`: A CSV string listing the ISO 639-1 language codes for the target languages (e.g.
 'de
fr
es
ja').

**2. Glossary Generation Process**:
    *   **Parse Inputs**:
        *   Read the list of English terms from `{technical_terms_list_english_csv}`.
        *   Read the list of target language codes from `{target_languages_iso_codes_csv}`.
    *   **Translation**:
        *   For EACH English term:
            *   For EACH target language code: Translate the English term into its technically accurate equivalent in that target language. Pay close attention to context within mechanical engineering.
            *   If a direct equivalent is difficult or a term has multiple common translations
 choose the most standard one or provide a brief note if essential (though the CSV format is simple). For this task
 aim for the single best equivalent.
            *   Handle multi-word terms (e.g.
 'Finite Element Analysis') as a single concept for translation.
    *   **Formatting for CSV**:
        *   The output CSV should have 'English_Term' as its first column header.
        *   Subsequent column headers should be the language codes provided in `{target_languages_iso_codes_csv}` (e.g.
 'de'
 'fr'
 'es').
        *   Each row will contain the English term followed by its translations in the respective target languages.

**3. Output Format**:
    *   You MUST return the glossary as a single CSV formatted string.
    *   The first row MUST be the header row as described above.
    *   Ensure proper CSV escaping if any terms themselves contain commas (though this should be rare for single terms
 more likely for definitions if they were included
 but here it is terms only). Assume terms do not contain commas for simplicity.

    Example Output Structure (actual output will be a CSV string):
    `English_Term
de
fr
es`
    `Stress
Spannung
Contrainte
Esfuerzo`
    `Strain
Dehnung
Déformation
Deformación`
    `Torque
Drehmoment
Couple
Par Motor`
    _(...and so on for all terms and all requested languages)

**IMPORTANT**: The quality of translation is CRITICAL. Use your knowledge of technical terminology. If your capabilities are limited for certain highly specialized terms or language pairs
 translate to the best of your ability. Focus on common and unambiguous translations where possible.
							

Invitation à l'IA à Générateur de justification du budget de la subvention

Cette invite demande à l'IA de générer une justification budgétaire détaillée pour une proposition de subvention en génie mécanique, sur la base d'un tableau CSV répertoriant les postes budgétaires, les coûts et les objectifs. Cela permet d'articuler clairement les besoins de financement pour les évaluateurs.

Sortie : 

				
					Given the following CSV table of budget items for a mechanical engineering grant proposal: {csv_budget_items}, generate a detailed budget justification. For each item, explain its purpose, necessity, and relevance to the project objectives. Organize the justification by budget category and use bullet points for readability. Ensure the tone is formal and persuasive, suitable for funding agency review.
							

Invitation à l'IA à Adaptation des revendications de brevet en langage clair

Réécriture d'une revendication de brevet formelle en une explication en langage clair, compréhensible par un public ne disposant pas d'une expertise juridique ou technique approfondie dans le domaine breveté. Cela permet de communiquer l'essence d'une invention. Le résultat est un texte.

Sortie : 

				
					Act as a Patent Analyst with skills in technical communication.
Your TASK is to adapt the provided `{patent_claim_text}` into a plain language explanation. The explanation should be understandable to an audience described by `{invention_general_description}` which also provides context about the invention's field.
The goal is to convey the SCOPE and ESSENCE of what the claim protects
 without using legal jargon or overly technical details from the claim itself unless explained.

**1. Input Details**:
    *   `{patent_claim_text}`: The full text of a single patent claim (typically Claim 1
 or another independent claim). Patent claims have a very specific structure
 preamble
 transitional phrase like 'comprising'
 and then a series of elements or limitations.
    *   `{invention_general_description}`: A brief description of what the invention is generally about and its intended audience for this explanation (e.g.
 'This invention is a new type of bicycle braking system
 explain for a product development team including marketing staff.' OR 'This is a software algorithm for optimizing CNC machining paths
 explain for mechanical engineers not specialized in software patents.').

**2. Adaptation Process**:
    *   **Deconstruct the Claim**:
        *   Identify the PREAMBLE (what the invention IS
 e.g.
 'A system for...'
 'A method of...').
        *   Identify the KEY ELEMENTS or steps listed after the transitional phrase (e.g.
 'comprising:'
 'consisting of:'). Each element defines a necessary part of the invention to be covered by the claim.
        *   Understand the RELATIONSHIPS between these elements.
    *   **Simplify Terminology**:
        *   Replace patent-specific legal jargon (e.g.
 'wherein'
 'said'
 'means for') with plain language.
        *   Simplify overly technical terms if possible
 using the `{invention_general_description}` to gauge appropriate vocabulary
 or briefly explain them.
    *   **Explain the Scope**:
        *   Clearly articulate what combination of features or steps defines the invention according to that claim. Emphasize that ALL listed key elements must typically be present for something to fall under the claim.
        *   Use analogies or simple examples if they help clarify the inventive concept
 drawing from the `{invention_general_description}`.
    *   **Focus on 'What it Does' and 'Key Unique Parts'**:
        *   Instead of just listing parts
 explain their function or purpose within the invention
 if clear from the claim.
        *   Highlight what seems to be the core inventive aspect or the main differentiators suggested by the claim's structure.
    *   **Structure for Clarity**:
        *   Use short sentences and paragraphs.
        *   Bullet points can be effective for listing the key components or features in plain language.

**3. Output Format**:
    *   The output MUST be a plain text explanation.
    *   It should start by stating what the invention generally is (drawing from the preamble and `{invention_general_description}`).
    *   Then
 it should break down what the specific claim covers.
    *   It should NOT be a legal opinion
 but an educational simplification.

    Example (Conceptual Flow):
    `This invention is about [general description from input].
Specifically
 this patent claim describes a [preamble in simple terms] that includes several key parts working together:
    *   First
 it has a [simplified element A] that does [function of A].
    *   Second
 there's a [simplified element B]
 which is connected to [element A or other part] and is responsible for [function of B].
    *   Finally
 [simplified element C] ensures that [outcome or function of C].
To be covered by this particular claim
 a system would need to have all these described features and connections.`

**IMPORTANT**: Maintain the technical and conceptual accuracy of the claim's scope. The simplification should not broaden or narrow the claim improperly
 but make its existing scope understandable. Avoid offering any legal advice or infringement opinions.
							

Invitation à l'IA à Générateur de résumé d'analyse documentaire

Cette invite demande à l'IA de résumer et de synthétiser une liste de documents ou d'articles universitaires relatifs à un sujet de génie mécanique, sous la forme d'une liste de titres et de résumés. Elle produit un aperçu structuré de la revue de la littérature.

Sortie : 

				
					You are given a list of academic papers related to the mechanical engineering topic: {list_of_papers}. For each paper, summarize the key findings, methodologies, and relevance. Then synthesize the information into a coherent literature review section highlighting gaps, trends, and consensus. Use markdown formatting with headings, bullet points, and italicized paper titles. Provide citations in a consistent style.
							

Invitation à l'IA à Analyse de la littérature sur les avancées matérielles

Résume les avancées récentes (au cours des N dernières années) dans une catégorie spécifique de matériaux, en mettant l'accent sur leur application dans un domaine particulier de l'ingénierie mécanique. Il identifie les principales tendances de la recherche et les publications les plus importantes. Le résultat est un résumé en format markdown.

Sortie : 

				
					Act as a Materials Science Research Analyst specializing in Mechanical Engineering applications.
Your TASK is to conduct a concise literature review summarizing recent advancements in `{material_class_name}` with a focus on their application in `{application_area_focus}` over the past `{time_period_years}` years.
You MUST use live internet access to gather information from scholarly articles
 conference proceedings
 and reputable technical sources.

**1. Search Strategy and Information Gathering**:
    *   Define search keywords based on `{material_class_name}` (e.g.
 'High Entropy Alloys'
 'Self-healing Polymers'
 'Metal Matrix Composites'
 'Biodegradable Magnesium Alloys')
 `{application_area_focus}` (e.g.
 'aerospace structural components'
 'biomedical implants'
 'automotive lightweighting'
 'tribological coatings')
 and terms like 'advancements'
 'recent research'
 'trends'
 'review'.
    *   Query academic databases (like Google Scholar
 Scopus
 Web of Science if accessible through your tools) and leading publisher sites (e.g.
 Elsevier
 Springer
 Wiley
 Nature
 Science).
    *   Filter results to the last `{time_period_years}` years.
    *   Prioritize review articles
 highly cited research papers
 and significant breakthrough reports.

**2. Analysis and Synthesis**:
    *   **Identify Key Advancements**: What are the most significant improvements or new discoveries related to `{material_class_name}` in the context of `{application_area_focus}`? This could include:
        *   New processing or manufacturing techniques.
        *   Improved mechanical properties (strength
 toughness
 fatigue resistance
 wear resistance
 etc.).
        *   Enhanced functional properties (e.g.
 corrosion resistance
 thermal stability
 biocompatibility
 self-healing capabilities).
        *   Novel compositions or microstructures.
        *   Successful application examples or case studies.
    *   **Identify Research Trends**: What are the current hot topics or directions in research for this material-application combination?
    *   **Key Researchers/Institutions (Optional
 if prominent)**: Briefly mention any leading research groups if they consistently appear.
    *   **Seminal Publications (2-3 examples)**: Cite (author
 year
 title
 journal if possible
 or just a descriptive reference) a few highly impactful papers from the review period that exemplify these advancements.

**3. Output Format (Markdown)**:
    *   **Title**: Literature Review: Recent Advancements in `{material_class_name}` for `{application_area_focus}` (Last `{time_period_years}` Years).
    *   **1. Introduction**: Briefly introduce `{material_class_name}` and its importance in `{application_area_focus}`.
    *   **2. Key Advancements**: Use subheadings for different categories of advancements if logical
 or a narrative style. Be specific and provide examples.
    *   **3. Current Research Trends**: Summarize the dominant research directions.
    *   **4. Notable Publications**: List 2-3 key papers as described above.
    *   **5. Challenges and Future Outlook**: Briefly discuss any remaining challenges or potential future developments.
    *   **6. Sources Consulted (General Statement)**: Indicate that the review is based on publicly available scholarly literature and state if specific databases were primarily used if known by your tools.

**IMPORTANT**: The summary should be concise yet informative
 targeted at a mechanical engineer looking for an update on the topic. Ensure information is up-to-date by leveraging live internet search. Properly attribute information conceptually if not citing formally (e.g.
 'Research indicates...'
 'Studies have shown...').
							

Invitation à l'IA à Outil d'identification des chercheurs clés

Identifie et répertorie les principaux chercheurs ou groupes de recherche, ainsi que leurs institutions affiliées, très actifs dans un domaine de niche de l'ingénierie mécanique. Cela permet de trouver des collaborateurs, des experts ou de la documentation pertinente. Le résultat est une liste CSV.

Sortie : 

				
					Act as a Research Intelligence Analyst specializing in mapping expertise in engineering fields.
Your TASK is to identify key researchers (or research groups) and their institutions who are highly active and influential in the `{niche_mechanical_engineering_topic}`. You should aim to provide `{number_of_results_desired}` distinct entries.
You MUST use live internet access to query academic search engines
 university research portals
 and publication databases.

**1. Search and Identification Strategy**:
    *   Formulate targeted search queries using keywords derived from `{niche_mechanical_engineering_topic}` (e.g.
 if topic is 'triboelectric nanogenerators for vibration energy harvesting'
 use these terms plus 'researcher'
 'professor'
 'publications'
 'lab').
    *   Utilize academic search engines (Google Scholar
 Semantic Scholar
 etc.) and potentially specific university/research institution websites.
    *   Look for indicators of significant contribution and activity:
        *   High number of relevant publications in reputable journals/conferences.
        *   High citation counts for relevant work.
        *   Principal Investigator (PI) status on relevant grants or projects.
        *   Keynote speaker invitations or leadership roles in relevant conferences/societies.
        *   Patents filed in the area.
    *   Prioritize individuals who have published consistently or significantly on the topic in recent years (e.g.
 last 5-10 years).

**2. Data Extraction and Formatting**:
    *   For each identified key researcher/group
 try to find:
        *   Full Name of the lead researcher (if an individual) or Research Group Name.
        *   Primary Affiliated Institution (University
 Research Institute).
        *   Department or Lab (if readily available).
        *   A key publication or a very brief summary of their focus within the `{niche_mechanical_engineering_topic}` (e.g.
 'Focus on material development for TENGs' or a specific highly cited paper title).
        *   (Optional but helpful) A URL to their official profile or lab page if easily found.

**3. Output Format (CSV)**:
    *   You MUST return the results as a single CSV string.
    *   The CSV header row MUST be: `Rank
Researcher_Or_Group_Name
Affiliated_Institution
Department_Or_Lab
Focus_Or_Key_Publication
Profile_URL`
    *   Populate the table with up to `{number_of_results_desired}` entries
 ranked roughly by perceived influence or activity if possible (this is subjective
 so best effort is fine
 or simply list them). If ranking is hard
 'Rank' can be a simple serial number.
    *   If some information (e.g.
 Department
 Profile_URL) is not easily found
 leave that cell blank in the CSV row but maintain comma separators.

    Example of a CSV row:
    `1
Prof. John Doe
Massachusetts Institute of Technology
Dept. of Mechanical Engineering
Pioneering work on XYZ sensors
http://mit.edu/johndoe`

**IMPORTANT**: The quality of results depends on effective searching and interpretation of academic output. Prioritize relevance to the `{niche_mechanical_engineering_topic}`. State that the list is based on publicly available information accessed at the time of the query.
							

Invitation à l'IA à Méthodologie de conception Analyse de l'évolution

Analyse et décrit l'évolution historique, les étapes clés et les tendances actuelles d'une méthodologie ou d'une philosophie de conception mécanique spécifique. Cela aide les ingénieurs à comprendre le contexte et les progrès des approches de conception. Le résultat est un récit ou une chronologie au format markdown.

Sortie : 

				
					Act as an Engineering Design Historian and Theorist.
Your TASK is to analyze and outline the evolution of the mechanical design methodology known as `{design_methodology_name}`
 starting from approximately `{approximate_start_year_or_era}` to the present day.
You should use live internet access to research its history
 key proponents
 seminal publications/tools
 and current trends.

**1. Research and Information Gathering**:
    *   Use `{design_methodology_name}` (e.g.
 'Design for Six Sigma (DFSS)'
 'Axiomatic Design'
 'TRIZ (Theory of Inventive Problem Solving)'
 'Robust Design (Taguchi Methods)'
 'Topology Optimization') and terms like 'history'
 'evolution'
 'key developments'
 'timeline'
 'impact' in your searches.
    *   Consult scholarly articles
 books
 historical accounts
 and reputable engineering resources.
    *   Identify:
        *   Origins and foundational concepts/principles.
        *   Key individuals or organizations that developed or promoted the methodology.
        *   Significant milestones
 publications
 or software tools that marked turning points.
        *   How the methodology has been adapted or integrated with other approaches over time.
        *   Its impact on mechanical engineering practice.
        *   Current trends
 criticisms
 or areas of ongoing development related to it.

**2. Structuring the Analysis (Output as Markdown)**:
    You can choose a chronological narrative or a timeline-based structure. Ensure the following aspects are covered:
    *   **Title**: The Evolution of `{design_methodology_name}` in Mechanical Engineering.
    *   **1. Introduction**: Briefly define `{design_methodology_name}` and state its core objectives.
    *   **2. Origins and Early Development (around `{approximate_start_year_or_era}` and following period)**:
        *   Describe the context or problems that led to its development.
        *   Mention key founders/pioneers and their initial contributions.
    *   **3. Key Milestones and Expansion**:
        *   Detail significant developments
 theoretical refinements
 or practical breakthroughs in chronological order or by thematic progression.
        *   Mention any influential books
 papers
 or case studies that popularized or validated the methodology.
        *   Discuss the development of associated tools or software
 if applicable.
    *   **4. Mainstream Adoption and Impact**:
        *   When and how did it gain wider acceptance in industry and academia?
        *   What has been its primary impact on how mechanical design is approached or taught?
    *   **5. Current Status
 Trends
 and Criticisms**:
        *   How is `{design_methodology_name}` viewed or used today?
        *   Are there new interpretations
 integrations with digital tools (e.g.
 AI
MBSE)
 or extensions of the methodology?
        *   Are there any common criticisms or limitations discussed in the literature?
    *   **6. Future Outlook**:
        *   Brief speculation on its future trajectory or relevance.

**IMPORTANT**: The analysis should be insightful and provide a good historical overview for a mechanical engineer. Focus on conceptual evolution and practical impact. Ensure information is corroborated from reliable sources accessed via the internet.
							

Invitation à l'IA à Identification des lacunes de connaissances à partir des résumés

Identifie les lacunes potentielles en matière de connaissances ou les domaines de recherche future dans un domaine spécifique de l'ingénierie mécanique en analysant une collection de résumés de recherche récents. Cela aide les chercheurs à identifier de nouvelles questions de recherche. Le résultat est une liste markdown.

Sortie : 

				
					Act as a Research Strategist with expertise in identifying emerging research fronts in Mechanical Engineering.
Your TASK is to analyze a `{collection_of_abstracts_text}` from recent research within the `{research_area_description_text}` and identify potential knowledge gaps
 unanswered questions
 or underexplored aspects that could suggest avenues for future research.

**1. Input Processing**:
    *   `{research_area_description_text}`: A clear description of the specific field or sub-field of mechanical engineering (e.g.
 'Additive Manufacturing of Nickel Superalloys for High-Temperature Applications'
 'Vibration Damping using Metamaterials in Rotating Machinery'
 'Machine Learning for Predictive Maintenance of Hydraulic Systems').
    *   `{collection_of_abstracts_text}`: A single block of text containing multiple research paper abstracts (e.g.
 5-10 abstracts). Each abstract should be clearly demarcated if possible
 or just concatenated.

**2. Analysis Methodology**:
    *   **Thematic Analysis**: Read through all abstracts to understand the main themes
 methodologies
 and findings being reported in the `{research_area_description_text}`.
    *   **Identify Common Focus Areas**: What specific problems
 materials
 techniques
 or applications are frequently addressed?
    *   **Look for Limitations Stated**: Do any abstracts explicitly mention limitations of their own work
 or suggest future work? These are direct pointers to gaps.
    *   **Note Unaddressed Intersections**: Are there logical connections between sub-topics that don't seem to be explored? (e.g.
 if one abstract discusses material A for application X
 and another discusses material B for application X
 is the comparison between A and B for X a gap?).
    *   **Consider Unexplored Parameters or Conditions**: Are studies typically focused on a narrow range of conditions
 materials
 or scales? What happens outside these ranges?
    *   **Methodological Gaps**: Are certain advanced methodologies (e.g.
 novel simulation techniques
 AI/ML approaches
 new experimental methods) not yet widely applied in this area despite potential benefits?
    *   **Contradictory or Inconclusive Findings**: Do any abstracts present conflicting results or highlight areas where findings are still inconclusive?
    *   **Assumptions and Simplifications**: What common assumptions are made that might not hold true in all scenarios
 suggesting a need for more complex models or experiments?

**3. Output Format (Markdown)**:
    *   **Title**: Potential Knowledge Gaps and Future Research Directions in `{research_area_description_text}` (Based on Provided Abstracts).
    *   **1. Overview of Current Research Focus**: Briefly summarize the dominant themes identified in the provided abstracts.
    *   **2. Identified Potential Knowledge Gaps / Research Questions**: This is the main section. List each potential gap or research question as a clear
 concise bullet point. For each point
 briefly explain the reasoning based on your analysis of the abstracts. Examples:
        *   `*   **The long-term performance of [Material X] under cyclic thermal loading combined with [Environmental Factor Y] appears underexplored.** While abstracts A and B discuss thermal performance
 and abstract C mentions Factor Y independently
 their combined effect is not addressed.`
        *   `*   **Comparative analysis of [Technique 1] vs. [Technique 2] for achieving [Specific Outcome Z] is lacking.** Abstracts D and E advocate for different techniques but no direct comparison of efficacy or cost-effectiveness was found.`
        *   `*   **Most studies focus on [Specific Scale/Condition A]
 leaving a gap in understanding behavior at [Different Scale/Condition B].** This is evident as abstracts F
 G
 H all operate within Condition A.`
    *   **3. Concluding Remarks**: Briefly reiterate the value of exploring these gaps.

**IMPORTANT**: The identified gaps MUST be logically derived from the content of the `{collection_of_abstracts_text}` and the context of `{research_area_description_text}`. Avoid speculating wildly beyond the provided information. The output should stimulate critical thinking for new research.
							

Invitation à l'IA à Génération d'un tableau AMDE pour le sous-système

Génère un modèle d'analyse des modes de défaillance et de leurs effets (AMDE) pour un sous-système mécanique spécifié, énumérant les modes de défaillance potentiels, les causes des effets et recommandant des niveaux initiaux de gravité et de détection. Cela permet de lancer le processus d'évaluation des risques. Le résultat est une structure de tableau CSV.

Sortie : 

				
					Act as a Reliability Engineer specializing in FMEA for Mechanical Systems.
Your TASK is to generate a structured FMEA table (as a CSV string) for the `{subsystem_name_and_function}`
 considering its `{key_components_list_csv}` and `{operating_environment_description}`. You should populate the table with common
 plausible failure modes
 causes
 and effects
 and suggest initial placeholder RPN ratings or qualitative assessments.

**1. Input Analysis**:
    *   `{subsystem_name_and_function}`: Clear description (e.g.
 'Fuel Pumping Unit for Diesel Engine - delivers pressurized fuel to injectors'
 'Landing Gear Retraction Actuator - hydraulic cylinder that retracts/deploys landing gear').
    *   `{key_components_list_csv}`: CSV string listing major components within the subsystem (e.g.
 'Pump_Housing
Electric_Motor
Impeller
Pressure_Regulator
Seals
Bearings').
    *   `{operating_environment_description}`: Details of operational context (e.g.
 'Automotive under-hood
 -40C to 120C
 high vibration
 exposure to fuel/oil'; 'Aerospace
 high cycle fatigue
 wide temperature range
 safety-critical').

**2. FMEA Table Generation Logic**: For each key component in `{key_components_list_csv}` (or for the subsystem as a whole
 focusing on its functions):
    *   **Identify Potential Failure Modes**: What are common ways this component or function can fail? (e.g.
 For a pump: 'Fails to deliver pressure'
 'Leaks'
 'Noisy operation'
 'Seizure'. For a motor: 'Fails to start'
 'Overheats'
 'Excessive vibration').
    *   **Identify Potential Causes**: For each failure mode
 list plausible causes (e.g.
 For pump 'Fails to deliver pressure': 'Impeller wear'
 'Motor failure'
 'Blocked inlet'
 'Internal leakage'). Consider material degradation
 wear and tear
 manufacturing defects
 operational errors
 environmental factors from `{operating_environment_description}`.
    *   **Identify Potential Effects**: For each failure mode
 what are the consequences on the subsystem
 the larger system
 and the end-user/environment? (e.g.
 For pump 'Fails to deliver pressure': 'Engine stalls (system effect)'
 'Vehicle stranded (end-user effect)'
 'Loss of mission (aerospace context)').
    *   **Current Controls (Prevention/Detection)**: Suggest typical preventative controls (design features
 manufacturing tests) or detection controls (sensors
 inspection methods) that might be in place. If none obvious
 state 'None Assumed' or 'To be determined'.
    *   **Assign Initial S-O-D Ratings (Severity
 Occurrence
 Detection)**: Use a 1-10 scale (10 being worst for S/O
 10 being worst/hardest for D). These are INITIAL ESTIMATES to be reviewed by the engineering team.
        *   Severity (S): Based on the worst potential effect.
        *   Occurrence (O): Likelihood of the cause occurring. Consider `{operating_environment_description}`.
        *   Detection (D): Likelihood of detecting the cause or failure mode before it has a major effect
 based on current controls.
    *   **Calculate RPN (Risk Priority Number)**: S x O x D.
    *   **Recommended Actions (Placeholder)**: Initially can be 'Investigate further'
 'Consider design change'
 'Improve detection method' or leave blank for team input.

**3. Output Format (CSV String)**:
    *   The CSV header MUST be: `Item_Or_Function
Potential_Failure_Mode
Potential_Effect_of_Failure
Severity_S
Potential_Cause_of_Failure
Occurrence_O
Current_Design_Controls_Prevention
Current_Design_Controls_Detection
Detection_D
RPN
Recommended_Actions`
    *   Each row will represent one failure mode.
    *   Example row snippet (conceptual):
    `Electric_Motor
Fails_to_start
Subsystem_inoperable
Engine_does_not_start
Vehicle_stranded
8
Open_circuit_in_winding
Corrosion_due_to_environment
4
Visual_inspection_at_assembly
None_during_operation
7
224
Review_winding_protection
Consider_sealed_unit`

**IMPORTANT**: This FMEA is a STARTER TEMPLATE. The AI should populate it with plausible
 common mechanical failure scenarios. The ratings are subjective and for initial discussion by the engineering team. Emphasize that this output needs thorough review and validation by experts familiar with the specific design.
							
Table des matières
    Aggiungere un'intestazione per iniziare a generare l'indice.

    DÉFI DE CONCEPTION ou DE PROJET ?
    Ingénieur mécanique, chef de projet ou de R&D
    Développement de produits efficace

    Disponible pour un nouveau défi à court terme en France et en Suisse.
    Contactez-moi sur LinkedIn
    Produits en plastique et en métal, Conception à coût réduit, Ergonomie, Volumes moyens à élevés, Secteurs réglementés, CE et FDA, CAO, Solidworks, Lean Sigma Black Belt, médical ISO 13485 Classes II et III

    Nous recherchons un nouveau sponsor

     

    Votre entreprise ou institution s'intéresse à la technique, à la science ou à la recherche ?
    > envoyez-nous un message <

    Recevez tous les nouveaux articles
    Gratuit, pas de spam, email non distribué ni revendu

    ou vous pouvez obtenir votre adhésion complète - gratuitement - pour accéder à tout le contenu restreint >ici<

    Sujets abordés : invites de test, validation, saisie par l'utilisateur, collecte de données, mécanisme de retour d'information, tests interactifs, conception d'enquêtes, tests d'utilisabilité, évaluation de logiciels, conception expérimentale, évaluation des performances, questionnaire, ISO 9241, ISO 25010, ISO 20282, ISO 13407, et ISO 26362.

    1. Wynter

      Sommes-nous en train de supposer que l'IA peut toujours générer les meilleurs messages en génie mécanique ? Comment sont-elles générées ?

    2. Giselle

      L'IA va-t-elle rendre les ingénieurs humains superflus ?

    Laisser un commentaire

    Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

    Articles Similaires

    Retour en haut

    Vous aimerez peut-être aussi