Hogar » Últimas publicaciones y patentes sobre procesamiento del lenguaje natural (PLN)

Últimas publicaciones y patentes sobre procesamiento del lenguaje natural (PLN)

Procesamiento del lenguaje natural (PLN)

Esta es nuestra última selección de publicaciones y patentes mundiales en inglés sobre Procesamiento del Lenguaje Natural (PLN), entre muchas revistas científicas en línea, clasificadas y centradas en el procesamiento del lenguaje natural, tokenización, stemming, lematización, part-of-speech, reconocimiento de entidades con nombre y análisis de sentimientos.

Voice-based conversation artificial intelligence for point-of-sale systems

Patent published on the 2025-03-06 in WO under Ref WO2025049246 by PREDICTSPRING INC [US] (Mangtani Nitin [us], Garimella Sandilya [us], Chadalawada Viswanth [us], Sahu Madhav [us])

Abstract: A conversational artificial intelligence (Al) point-of-sale (POS) system uses generative Al to help a store associate complete tasks in a retail environment. This POS system combines four technologies: speech recognition; natural language processing; acting in response to verbal command in the context of a retail store and a POS device; and providing bi-directional and fully conversational responses. The Al, which runs in an app on a smartphone, tablet, or other mobile device, uses a machine lea[...]


Our summary: Conversational AI POS system uses generative AI to assist store associates in retail tasks, combining speech recognition, natural language processing, and bi-directional responses. The AI, running on mobile devices, utilizes ML models trained on support tickets and product documentation to understand dependencies and provide appropriate responses.

voice-based conversation, artificial intelligence, point-of-sale systems, generative AI

Patent

Image interpretation model development

Patent published on the 2025-03-06 in WO under Ref WO2025048865 by SYNTHESIS HEALTH INC [CA] (Reicher Murray [ca], Kaura Deepak [ca])

Abstract: An image classification model, e.g., a neural network model, may be trained on a set of training medical imaging exams each including a training report and a training medical image. A model generation module or device may, for each of the training medical imaging exams: use finding item criteria to reorganize text of the training report into a list of finding items, each associated with text extracted from the training report text, use natural language processing to analyze the resultant text as[...]


Our summary: Training a neural network model on medical imaging exams with associated finding items and classifications extracted from training reports.

image interpretation, model development, neural network, medical imaging

Patent

regulatory challenges, technical solutions, and practical pathways

Published on 2025-02-19 by @OXFORD

Abstract: AbstractThis paper thoroughly explores the complex interplay between blockchain technology and the General Data Protection Regulation (GDPR) of the European Union, alongside the substantial challenges and potential opportunities stemming from their interaction. While the challenges of decentralization and immutability in blockchain are well-documented, this paper advances the discussion by incorporating legal developments, such as evolving interpretations of joint controllership and new advisory[...]


Our summary: This paper examines the regulatory challenges and technical solutions in aligning blockchain technology with GDPR principles, proposing practical pathways for compliance through innovative solutions such as chameleon hashes and zero-knowledge proofs.

blockchain technology, General Data Protection Regulation (GDPR), compliance challenges, innovative solutions

Publication

Metric-Free Learning Network with Dual Relations Propagation for Few-Shot Aspect Category Sentiment Analysis

Published on 2024-02-03 by Shiman Zhao, Yutao Xie, Wei Chen, Tengjiao Wang, Jiahui Yao, Jiabin Zheng @MIT

Abstract: Few-shot Aspect Category Sentiment Analysis (ACSA) is a crucial task for aspect-based sentiment analysis, which aims to detect sentiment polarity for a given aspect category in a sentence with limited data. However, few-shot learning methods focus on distance metrics between the query and support sets to classify queries, heavily relying on aspect distributions in the embedding space. Thus, they suffer from overlapping distributions of aspect embeddings caused by irrelevant sentiment noise among[...]


Our summary: Metric-Free Learning Network with Dual Relations Propagation for Few-Shot Aspect Category Sentiment Analysis. Crucial task for aspect-based sentiment analysis. Proposes metric-free method using Dual Relations Propagation. Achieves improvement in accuracy and F1 score.

learning, network, relations, propagation, sentiment

Publication

Tabla de contenido
    Ajoutez un en-tête pour commencer à générer la table des matières

    ¿DISEÑO o RETO DE PROYECTO?
    Ingeniero Mecánico, Gerente de Proyectos o de I+D
    Desarrollo eficaz de productos

    Disponible para un nuevo desafío a corto plazo en Francia y Suiza.
    Contáctame en LinkedIn
    Productos de plástico y metal, Diseño a coste, Ergonomía, Volumen medio a alto, Industrias reguladas, CE y FDA, CAD, Solidworks, Lean Sigma Black Belt, ISO 13485 Clase II y III médica

    Buscamos un nuevo patrocinador

     

    ¿Su empresa o institución se dedica a la técnica, la ciencia o la investigación?
    > Envíanos un mensaje <

    Recibe todos los artículos nuevos
    Gratuito, sin spam, correo electrónico no distribuido ni revendido.

    o puedes obtener tu membresía completa -gratis- para acceder a todo el contenido restringido >aquí<

    Temas tratados: Procesamiento del Lenguaje Natural, PLN, tokenización, stemming, lematización, parte-de-habla, reconocimiento de entidades con nombre, análisis de sentimientos, multimodal, detección de sarcasmo, basado en transformadores, IA generativa, ISO/IEC 30170, ISO/IEC 24751, ISO/IEC 26515, ISO/IEC 23026, e ISO/IEC 30122.

    1. Alisson Kelly

      Interesting read, but have these NLP patents truly enhanced AIs ability to understand human emotions? Open for debate.

    Los comentarios están cerrados.

    Publicaciones relacionadas

    Scroll al inicio

    También te puede interesar