Hogar » PFAS Bioaccumulation and Biomagnification

PFAS Bioaccumulation and Biomagnification

2000
Toxicologist analyzing fish samples for PFAS in a laboratory setting.

Unlike many persistent organic pollutants that accumulate in fatty tissues, long-chain PFAS like PFOA and PFOS primarily bind to proteins in the blood serum (e.g., albumin) and accumulate in well-perfused organs like the liver. This leads to bioaccumulation within an organism and biomagnification up the food chain, resulting in higher concentrations in apex predators, including humans.

The environmental behavior of long-chain PFAS is distinct from classical persistent organic pollutants (POPs) like PCBs or DDT. While traditional POPs are lipophilic (fat-loving) and accumulate in adipose tissue, the amphiphilic nature of PFAS (having both a hydrophobic/lipophobic tail and a hydrophilic head) dictates a different biological fate. The charged functional group (e.g., carboxylate in PFOA or sulfonate in PFOS) interacts with proteins. Specifically, these compounds bind to serum albumin in the blood and fatty acid-binding proteins within cells. This protein-binding mechanism facilitates their transport throughout the body and leads to accumulation in protein-rich tissues and organs with high blood flow, such as the liver, kidneys, and blood itself. Because they are not easily metabolized or excreted, their biological half-life in humans can be several years. This persistence within a single organism is the basis for bioaccumulation. As organisms are consumed by others higher up the food web, the concentration of PFAS increases at each trophic level, a process known as biomagnification. This is why top predators like polar bears, dolphins, and humans often exhibit the highest levels of PFAS contamination.

UNESCO Nomenclature: 2512
– Toxicology

Tipo

Proceso biológico

Disrupción

Incremental

Utilización

Uso generalizado

Precursores

  • understanding of food webs and trophic levels
  • development of analytical chemistry techniques (e.g., LC-MS/MS) to detect low concentrations of chemicals in biological tissues
  • the concept of bioaccumulation established with earlier pollutants like ddt and mercury
  • studies on protein binding of pharmaceuticals

Aplicaciones

  • development of public health advisories for fish consumption
  • environmental regulations limiting pfas discharge (e.g., stockholm convention)
  • biomonitoring programs to track human exposure levels
  • toxicological models to predict health risks

Patentes:

NA

Posibles ideas innovadoras

Membresía obligatoria de Professionals (100% free)

Debes ser miembro de Professionals (100% free) para acceder a este contenido.

Únete ahora

¿Ya eres miembro? Accede aquí
Related to: bioaccumulation, biomagnification, pfas, pfoa, pfos, toxicology, persistent organic pollutants, serum albumin, environmental fate, food chain.

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

DISPONIBLE PARA NUEVOS RETOS
Ingeniero Mecánico, Gerente de Proyectos, Ingeniería de Procesos o I+D
Desarrollo eficaz de productos

Disponible para un nuevo desafío a corto plazo.
Contáctame en LinkedIn
Integración de electrónica de metal y plástico, diseño a coste, GMP, ergonomía, dispositivos y consumibles de volumen medio a alto, fabricación eficiente, industrias reguladas, CE y FDA, CAD, Solidworks, cinturón negro Lean Sigma, ISO 13485 médico

Estamos buscando un nuevo patrocinador

 

¿Su empresa o institución se dedica a la técnica, la ciencia o la investigación?
> Envíanos un mensaje <

Recibe todos los artículos nuevos
Gratuito, sin spam, correo electrónico no distribuido ni revendido.

o puedes obtener tu membresía completa -gratis- para acceder a todo el contenido restringido >aquí<

Contexto histórico

(si se desconoce la fecha o no es relevante, por ejemplo "mecánica de fluidos", se ofrece una estimación redondeada de su notable aparición)

Invención, innovación y principios técnicos relacionados

Scroll al inicio

También te puede interesar