A set of three physical laws forming the basis of classical mecánica. En first law (inertia) states an object remains at rest or in uniform motion unless acted upon by a net external force. The second law quantifies force as mass times acceleration, [latex]\vec{F} = m\vec{a}[/latex]. The third law states that for every action, there is an equal and opposite reaction.
Las leyes del movimiento de Newton
- Isaac Newton

Published in his 1687 work, *Philosophiæ Naturalis Principia Mathematica*, Newton’s three laws of motion revolutionized science. They provided a complete framework for describing the motion of everyday objects, forming the bedrock of what is now known as classical mechanics.
The First Law, the law of inertia, defines an inertial reference frame—a frame of reference where the law holds true. It states that an object’s velocity is constant unless a net force acts upon it. This was a departure from the Aristotelian idea that motion required a continuous force.
The Second Law is the quantitative core of classical dynamics. It states that the net force on an object is equal to the rate of change of its momentum. For an object with constant mass [latex]m[/latex], this simplifies to the famous equation [latex]\vec{F} = m\vec{a}[/latex], where [latex]\vec{F}[/latex] is the net force vector and [latex]\vec{a}[/latex] is the resulting acceleration vector. This is a differential equation, and solving it allows for the prediction of an object’s trajectory through time.
La Tercera Ley, la ley de acción y reacción, establece que las fuerzas siempre ocurren en pares. Si el objeto A ejerce una fuerza sobre el objeto B, entonces el objeto B ejerce simultáneamente una fuerza sobre el objeto A de igual magnitud y dirección opuesta. Este principio es fundamental para comprender las interacciones y conduce directamente a la ley de conservación del momento.
Estas leyes son notablemente precisas para el mundo macroscópico a velocidades muy inferiores a la de la luz. Su validez se desvanece en los ámbitos de la relatividad especial (a altas velocidades) y la mecánica cuántica (a escalas atómica y subatómica), donde son reemplazadas por teorías más generales.
Tipo
Disrupción
Utilización
Precursores
- Galileo’s concept of inertia
- Kepler’s laws of planetary motion
- Obra de René Descartes sobre el movimiento
- La física aristotélica (como marco a sustituir)
Aplicaciones
- Ingeniería de vehículos (coches, aviones, cohetes)
- ingeniería estructural (puentes, edificios)
- robótica y automatización
- cálculos de balística y movimiento de proyectiles
- Mecánica celeste y órbitas de satélites
Patentes:
Posibles ideas innovadoras
Membresía obligatoria de Professionals (100% free)
Debes ser miembro de Professionals (100% free) para acceder a este contenido.
DISPONIBLE PARA NUEVOS RETOS
Ingeniero Mecánico, Gerente de Proyectos, Ingeniería de Procesos o I+D
Disponible para un nuevo desafío a corto plazo.
Contáctame en LinkedIn
Integración de electrónica de metal y plástico, diseño a coste, GMP, ergonomía, dispositivos y consumibles de volumen medio a alto, fabricación eficiente, industrias reguladas, CE y FDA, CAD, Solidworks, cinturón negro Lean Sigma, ISO 13485 médico
Estamos buscando un nuevo patrocinador
¿Su empresa o institución se dedica a la técnica, la ciencia o la investigación?
> Envíanos un mensaje <
Recibe todos los artículos nuevos
Gratuito, sin spam, correo electrónico no distribuido ni revendido.
o puedes obtener tu membresía completa -gratis- para acceder a todo el contenido restringido >aquí<
Contexto histórico
Las leyes del movimiento de Newton
(si se desconoce la fecha o no es relevante, por ejemplo "mecánica de fluidos", se ofrece una estimación redondeada de su notable aparición)
Invención, innovación y principios técnicos relacionados