
Las herramientas de IA en línea están transformando rápidamente la ingeniería mecánica al aumentar las capacidades humanas en diseño, análisis, fabricacióny mantenimiento. Estos sistemas de IA pueden procesar grandes cantidades de datos, identificar patrones complejos y generar soluciones novedosas mucho más rápido que los métodos tradicionales. Por ejemplo, la IA puede ayudarle a optimizar el rendimiento y la fabricabilidad de los diseños, acelerar simulaciones complejas, predecir las propiedades de los materiales y automatizar una amplia gama de tareas analíticas.
Las indicaciones que se ofrecen a continuación ayudarán, por ejemplo, en el diseño generativo, acelerarán las simulaciones (FEA/CFD), ayudarán en el mantenimiento predictivo en el que la IA analiza los datos de los sensores de la maquinaria para prever posibles fallos, lo que permite un mantenimiento proactivo y minimiza el tiempo de inactividad, ayudarán en la selección de materiales y mucho más.
- Esta página es específica para un dominio. Si lo desea, puede realizar búsquedas en todos los dominios y según todos los criterios en nuestro >. Directorio AI Prompts <, dedicado a diseño de producto y innovación.
- Dados los recursos del servidor y el tiempo, los propios avisos están reservados sólo a los miembros registrados, y no son visibles a continuación si no se ha iniciado sesión. Puede registrarse, 100% gratis:
- Modelización predictiva
- Ingeniería mecánica
AI Prompt to Extrapolación de la tendencia de degradación del rendimiento
- Análisis de fallos, Ingeniería Mecánica, Seguimiento del rendimiento, Algoritmos de mantenimiento predictivo, Optimización de procesos, Gestión de calidad, Control estadístico de procesos (CEP), Análisis de vibraciones
Analiza series temporales de datos de rendimiento de un sistema mecánico para identificar tendencias de degradación y extrapolarlas para predecir cuándo podría alcanzarse un umbral de fallo predefinido. Este indicador ayuda en los esfuerzos de pronóstico sugiriendo un modelo matemático adecuado para la tendencia y estimando el tiempo hasta el fallo. La salida es un objeto JSON que contiene la predicción del tipo de modelo y la confianza.
Salida:
- JSON
- no requiere Internet en directo
- Campos: {nombre_y_unidades_de_la_métrica_de_rendimiento} {serie_tiempo_datos_csv} {valor_umbral_fallo}
Act as a Reliability Analyst specializing in trend analysis and prognostics.
Your TASK is to analyze a time-series dataset of a `{performance_metric_name_and_units}` (e.g.
'Vibration_Amplitude_mm_s'
'Efficiency_Percent'
'Crack_Length_mm') for a mechanical system.
The data is provided as `{time_series_data_csv}` (CSV string with two columns: 'Timestamp_or_Cycle' and 'Metric_Value').
Your goal is to:
1. Identify a suitable mathematical model for the degradation trend.
2. Extrapolate this trend to predict when the metric will reach the `{failure_threshold_value}`.
3. Provide an estimate of this prediction.
**ANALYSIS AND PREDICTION STEPS:**
1. **Data Loading and Preparation:**
* Parse `{time_series_data_csv}` into time/cycle (X) and metric value (Y). Ensure time is monotonically increasing.
* Visualize the data to observe the trend (e.g.
increasing
decreasing
linear
exponential).
2. **Trend Model Selection and Fitting:**
* Based on the visual trend and common degradation patterns
select potential models. Suggest AT LEAST TWO plausible models:
* **Linear Model**: `Y = aX + b`
* **Exponential Model**: `Y = a * exp(bX) + c` or `Y = a * X^b + c` (Power Law). If using log-transform for fitting
note this.
* **Polynomial Model (e.g.
quadratic)**: `Y = aX^2 + bX + c` (Use with caution
can be poor for extrapolation if not well-justified).
* Fit the selected models to the data using appropriate regression techniques (e.g.
least squares).
3. **Model Goodness-of-Fit Assessment:**
* For each fitted model
calculate a goodness-of-fit metric (e.g.
R-squared
RMSE).
* Select the BEST FITTING model that also makes SENSE from a physical degradation perspective (e.g.
avoid overly complex models that fit noise).
4. **Extrapolation and Time-to-Threshold Prediction:**
* Using the equation of the best-fitting model
solve for the 'Timestamp_or_Cycle' (X) when the 'Metric_Value' (Y) equals the `{failure_threshold_value}`.
* This predicted X is the estimated time/cycles to reach the threshold.
5. **Confidence Assessment (Qualitative or Simplified Quantitative):**
* Acknowledge the uncertainty in extrapolation.
* Qualitatively state confidence (e.g.
'High' if data shows a very clear
stable trend and threshold is not too far;
'Medium' or 'Low' if data is noisy
trend is less clear
or extrapolation is long).
* (Optional
if simple to implement for linear regression): Calculate prediction interval for the threshold crossing point if possible
or mention factors affecting confidence.
**OUTPUT FORMAT (JSON):**
You MUST return a single JSON object with the following structure:
```json
{
"input_summary": {
"metric_name": "`{performance_metric_name_and_units}`"
"failure_threshold": `{failure_threshold_value}`
"data_points_analyzed": [Number of data points from CSV]"
}
""trend_analysis"": {
""best_fit_model_type"": ""[e.g.
Linear
Exponential
Polynomial_Degree_2]""
""model_equation"": ""[Equation of the best fit model
e.g.
Y = 0.5*X + 10]""
""goodness_of_fit"": {
""metric"": ""[e.g.
R-squared or RMSE]""
""value"": "[Calculated value]"
}
}
""prediction"": {
""estimated_time_or_cycles_to_threshold"": "[Calculated X value when Y reaches threshold
numeric or 'Not Reached if trend does not intersect']""
""units_of_time_or_cycles"": ""[Units from 'Timestamp_or_Cycle' column
e.g.
Hours
Cycles
Days]""
""confidence_in_prediction"": ""[High/Medium/Low]""
""confidence_statement"": ""[Brief justification for confidence level
e.g.
Clear linear trend and data consistency support high confidence
or Noisy data and long extrapolation reduce confidence.]""
}
""warnings_or_notes"": ""[e.g.
Extrapolation assumes current degradation pattern continues. Significant operational changes may invalidate prediction. Polynomial models can be unreliable for far extrapolation.]""
}
```
**IMPORTANT**: Ensure calculations are clear. If the trend does not lead to the threshold (e.g.
metric improving or plateauing below threshold)
state this appropriately in the prediction. The AI should perform the calculations or outline them clearly if it simulates them."
- Mejor para: Ayudar a los ingenieros mecánicos a prever fallos en los equipos analizando las tendencias de degradación del rendimiento extrapolándolas a un umbral definido y sugiriendo modelos matemáticos adecuados.
- Análisis de las causas
- Ingeniería mecánica
AI Prompt to Root Cause Analysis Report Generator
- Mejora continua, Medidas correctoras, Análisis de fallos, Manufactura esbelta, Mejora de procesos, Seguro de calidad, Gestión de calidad, Análisis de las causas, Control estadístico de procesos (CEP)
This prompt instructs the AI to generate a detailed root cause analysis report for a mechanical failure incident based on a provided incident summary, test results, and inspection findings. It synthesizes information into a structured document.
Salida:
- Markdown
- no requiere Internet en directo
- Fields: {incident_summary} {test_results} {inspection_findings}
Generate a comprehensive root cause analysis report for the mechanical failure incident described below. Incident Summary: {incident_summary}. Test Results: {test_results}. Inspection Findings: {inspection_findings}. Structure the report with sections: Executive Summary, Problem Description, Analysis Methodology, Root Cause Identification, Recommendations for Prevention, and Conclusion. Use markdown formatting with headings and bullet points where appropriate. Emphasize clarity, technical accuracy, and actionable insights.
- Best for: Best for producing formal, structured root cause analysis documentation
- Consideraciones éticas y análisis de impacto
- Ingeniería mecánica
AI Prompt to Ethical Framework for Autonomous Machinery
- Sistemas avanzados de asistencia al conductor (ADAS), Inteligencia Artificial (IA), Vehículo autónomo, Pensamiento de diseño, Diseño centrado en el ser humano, Gestión de riesgos, Robótica, Seguridad
Generates a framework for ethical considerations in designing autonomous mechanical systems focusing on safety accountability and decision-making in unforeseen scenarios. This prompt helps engineers proactively address ethical challenges during the design phase of complex machinery. The output is a structured markdown document.
Salida:
- Markdown
- no requiere Internet en directo
- Fields: {autonomous_system_type} {operational_environment_description} {key_decision_making_scenarios_csv}
Act as an Ethics Advisor specializing in AI and Autonomous Systems in Mechanical Engineering.
Your TASK is to generate a structured ethical framework for the development and deployment of an `{autonomous_system_type}` operating in `{operational_environment_description}`.
The framework should address key ethical principles and provide guidance for handling scenarios listed in `{key_decision_making_scenarios_csv}` (a CSV string like 'Scenario_ID
Description
Potential_Conflict
e.g. S1
Obstacle_Avoidance
Prioritize_occupant_safety_vs_pedestrian_safety').
**FRAMEWORK STRUCTURE (MUST be Markdown format):**
**1. Introduction**
* Purpose of the Ethical Framework for `{autonomous_system_type}`.
* Scope of application considering `{operational_environment_description}`.
**2. Core Ethical Principles** (Define and explain relevance for `{autonomous_system_type}`)
* **Safety & Non-Maleficence**: Minimizing harm.
* **Accountability & Responsibility**: Who is responsible in case of failure?
* **Transparency & Explainability**: How are decisions made by the system understandable?
* **Fairness & Non-Discrimination**: Avoiding bias in decision-making.
* **Privacy**: Data collection and usage.
* **Human Oversight**: Levels of human control and intervention.
**3. Guidelines for Decision-Making in Critical Scenarios**
* For EACH scenario provided in `{key_decision_making_scenarios_csv}`:
* **Scenario Analysis**: Briefly describe the ethical dilemma posed.
* **Primary Ethical Principle(s) at Stake**: Identify which of the above principles are most relevant.
* **Recommended Approach/Hierarchy**: Suggest a decision-making logic or prioritization. Clearly state any trade-offs.
* **Justification**: Explain the reasoning behind the recommended approach based on ethical principles.
**4. Design and Development Recommendations**
* Specific design considerations for `{autonomous_system_type}` to embed ethical behavior (e.g.
fail-safe mechanisms
auditable logs
bias testing).
**5. Operational and Deployment Considerations**
* Monitoring ethical performance post-deployment.
* Procedures for addressing ethical breaches or unforeseen negative consequences.
**IMPORTANT**: The framework should be actionable and provide clear guidance for engineers. The discussion of scenarios from `{key_decision_making_scenarios_csv}` is CRUCIAL.
- Best for: Proactively developing ethical guidelines for autonomous mechanical systems helping engineers navigate complex moral decision-making in design and operation.
- Consideraciones éticas y análisis de impacto
- Ingeniería mecánica
AI Prompt to Esquema de la evaluación del impacto ambiental del ciclo de vida
- Economía circular, Fabricación respetuosa con el medio ambiente, Impacto ambiental, Evaluación del impacto ambiental, Ciclo de vida, Análisis del ciclo de vida (ACV), Prácticas de sostenibilidad, Desarrollo sostenible, Diseño de productos sostenibles
Describe las etapas y consideraciones clave para realizar una evaluación del impacto ambiental (ECV) del ciclo de vida de un nuevo producto mecánico. Esta guía ayuda a los ingenieros a estructurar sus esfuerzos de ACV identificando las categorías de impacto que necesitan datos y las oportunidades de mitigación. El resultado es un documento de marcado que detalla el plan de ACV.
Salida:
- Markdown
- requiere Internet en directo
- Campos: {nombre_y_función_del_producto} {lista_de_materiales_csv} {texto_sobre_los_procesos_de_fabricación} {texto_fase_de_uso_y_eliminación_prevista}
Act as an Environmental Engineering Consultant specializing in Lifecycle Assessments (LCA) for mechanical products.
Your TASK is to generate a structured OUTLINE for conducting a Lifecycle Environmental Impact Assessment for `{product_name_and_function}`.
Consider the product's composition from `{bill_of_materials_csv}` (CSV string: 'Material
Quantity
Source_Region_if_known')
its `{manufacturing_processes_overview_text}`
and its `{expected_use_phase_and_disposal_text}`.
You MAY use live internet to identify common impact assessment tools
databases (e.g.
Ecoinvent
GaBi)
and relevant ISO standards (e.g.
ISO 14040/14044).
**LCA OUTLINE STRUCTURE (MUST be Markdown format):**
**1. Goal and Scope Definition**
* **1.1. Purpose of the LCA**: (e.g.
Identify environmental hotspots
Compare with alternative designs
Eco-labeling).
* **1.2. Product System Description**: Define `{product_name_and_function}`.
* **1.3. Functional Unit**: Quantified performance of the product system (e.g.
'Provide X amount of torque for Y hours'
'Manufacture Z parts').
* **1.4. System Boundaries**: Detail what stages are INCLUDED and EXCLUDED (Cradle-to-Grave
Cradle-to-Gate
Gate-to-Gate). Justify exclusions.
* Raw Material Acquisition (based on `{bill_of_materials_csv}`).
* Manufacturing & Assembly (based on `{manufacturing_processes_overview_text}`).
* Distribution/Transportation.
* Use Phase (based on `{expected_use_phase_and_disposal_text}`).
* End-of-Life (Disposal/Recycling
based on `{expected_use_phase_and_disposal_text}`).
* **1.5. Allocation Procedures** (if dealing with multi-output processes or recycled content).
* **1.6. Impact Categories Selection**: (e.g.
Global Warming Potential (GWP
kg CO2 eq)
Acidification Potential
Eutrophication Potential
Ozone Depletion Potential
Smog Formation
Resource Depletion
Water Footprint). Select relevant categories for this product type.
* **1.7. LCA Methodology & Software/Databases**: (e.g.
CML
ReCiPe
TRACI. Mention common software like SimaPro
GaBi
openLCA
and databases like Ecoinvent).
**2. Life Cycle Inventory Analysis (LCI)**
* **2.1. Data Collection Plan**: For each life cycle stage:
* Identify required input data (energy
materials
water
transport) and output data (emissions
waste).
* Data sources (primary vs. secondary
from `{bill_of_materials_csv}`
literature
databases).
* **2.2. Data Quality Requirements** (e.g.
precision
completeness
representativeness).
**3. Life Cycle Impact Assessment (LCIA)**
* **3.1. Classification**: Assigning LCI results to selected impact categories.
* **3.2. Characterization**: Calculating category indicator results (e.g.
converting greenhouse gas emissions into CO2 equivalents).
* **3.3. Normalization (Optional)**: Expressing impact indicator results relative to a reference value.
* **3.4. Weighting (Optional
and to be used with caution)**: Assigning weights to different impact categories.
**4. Life Cycle Interpretation**
* **4.1. Identification of Significant Issues**: Hotspot analysis.
* **4.2. Evaluation**: Completeness
sensitivity
and consistency checks.
* **4.3. Conclusions
Limitations
and Recommendations for Mitigation** (e.g.
material substitution
process optimization
design for disassembly).
**IMPORTANT**: This outline should guide an engineer in planning a comprehensive LCA. Emphasize the iterative nature of LCA and the importance of data quality.
- Ideal para: Estructurar la evaluación del impacto ambiental del ciclo de vida de los productos mecánicos, lo que permite a los ingenieros evaluar y mitigar sistemáticamente las huellas ambientales.
- Consideraciones éticas y análisis de impacto
- Ingeniería mecánica
AI Prompt to Análisis del impacto social de la automatización
- Gestión del cambio, Automatización industrial, Ingeniería Mecánica, Prácticas de sostenibilidad
Analiza las posibles repercusiones sociales, como los cambios en el empleo, los cambios en la demanda de cualificaciones y los problemas de accesibilidad derivados de la implantación de una tecnología de automatización específica en un sector de la ingeniería mecánica. Este ejercicio ayuda a los ingenieros a tener en cuenta las consecuencias sociales más amplias. El resultado es un informe basado en texto.
Salida:
- Texto
- requiere Internet en directo
- Campos: {automation_technology_description} {industry_sector_of_application} {geographical_region_context}
Act as a Socio-Technical Analyst specializing in the impacts of automation in engineering fields.
Your TASK is to provide an analysis of the potential societal impacts of implementing `{automation_technology_description}` within the `{industry_sector_of_application}` specifically considering the `{geographical_region_context}`.
You SHOULD use live internet access to gather data on employment trends
skill demands
and relevant socio-economic studies for the specified region and sector.
**SOCIETAL IMPACT ANALYSIS REPORT (Plain Text Format):**
**1. Introduction**
* Overview of the `{automation_technology_description}` and its intended application in the `{industry_sector_of_application}`.
* Brief note on the socio-economic context of `{geographical_region_context}` relevant to automation.
**2. Potential Impacts on Employment**
* **Job Displacement**: Analyze potential for job losses in roles directly affected by the automation. Provide any available statistics or projections for the `{industry_sector_of_application}` in `{geographical_region_context}`.
* **Job Creation**: Analyze potential for new jobs created (e.g.
maintenance of automated systems
programming
data analysis
new roles enabled by the technology).
* **Job Transformation**: How existing roles might change
requiring new skills or responsibilities.
**3. Shifts in Skill Demand**
* **Upskilling/Reskilling Needs**: Identify skills that will become more critical (e.g.
digital literacy
robotics programming
data interpretation
complex problem-solving) and skills that may become obsolete.
* **Impact on Training and Education**: Discuss potential needs for changes in vocational training and engineering curricula in `{geographical_region_context}`.
**4. Economic Impacts**
* **Productivity Gains**: Potential for increased efficiency
output
and competitiveness in the `{industry_sector_of_application}`.
* **Investment Requirements**: Capital costs associated with implementing `{automation_technology_description}`.
* **Distribution of Economic Benefits**: Discuss who is likely to benefit most (e.g.
capital owners
highly skilled labor
consumers). Consider potential for increased inequality.
**5. Accessibility and Equity**
* **Impact on Small vs. Large Businesses**: Can businesses of all sizes in `{geographical_region_context}` adopt this technology
or does it favor larger enterprises?
* **Impact on Different Demographics**: Are there specific groups (e.g.
older workers
specific genders
minority groups) that might be disproportionately affected
positively or negatively?
* **Digital Divide**: Does the technology exacerbate or mitigate the digital divide within the region?
**6. Broader Societal and Ethical Considerations**
* **Worker Well-being**: Impact on job quality
stress levels
and workplace safety.
* **Social Acceptance and Resistance**: Potential for resistance to adoption from workers or the public.
* **Long-term Regional Development**: How might widespread adoption of this technology influence the economic trajectory of `{geographical_region_context}`?
**7. Policy Recommendations / Mitigation Strategies (Brief Suggestions)**
* Proactive measures that could be taken by policymakers
industry
or educational institutions in `{geographical_region_context}` to maximize benefits and mitigate negative impacts (e.g.
retraining programs
social safety nets
investment in education).
**8. Conclusion**
* Summary of key potential societal impacts and a call for responsible implementation.
**Disclaimer**: This analysis is based on publicly available information and general trends. Specific impacts can vary based on the details of implementation.
- Ideal para: Analizar las posibles consecuencias sociales de la automatización en la ingeniería mecánica, como los cambios en el empleo y la demanda de cualificaciones, para contribuir a una adopción responsable de la tecnología.
- Consideraciones éticas y análisis de impacto
- Ingeniería mecánica
AI Prompt to Evaluación ética de la tecnología de doble uso
- Fabricación aditiva, Diseño para fabricación aditiva (DfAM), Impacto ambiental, Ingeniería Mecánica, Gestión de riesgos, Prácticas de sostenibilidad
Realiza una evaluación ética preliminar de una tecnología de ingeniería mecánica que pueda tener aplicaciones de doble uso, destacando los riesgos potenciales, los dilemas éticos y proponiendo salvaguardas. El objetivo de este ejercicio es fomentar la innovación responsable teniendo en cuenta las consecuencias imprevistas. El resultado es un informe estructurado.
Salida:
- Markdown
- no requiere Internet en directo
- Campos: {descripción_tecnológica_y_capacidades} {intended_civilian_application} {potential_misuse_concerns_list_csv}
Act as an Ethics Reviewer specializing in dual-use technologies in engineering.
Your TASK is to conduct a preliminary ethical assessment of the `{technology_description_and_capabilities}`
considering its `{intended_civilian_application}` and the `{potential_misuse_concerns_list_csv}` (CSV string: 'Concern_ID
Description_of_Misuse
Potential_Harm_Level_High_Medium_Low').
**ETHICAL ASSESSMENT REPORT (MUST be Markdown format):**
**1. Technology Overview**
* Description of `{technology_description_and_capabilities}`.
* Stated `{intended_civilian_application}` and its potential benefits.
**2. Identification of Dual-Use Potential**
* Analysis of how the core capabilities of the technology could be diverted for harmful or unintended military/security purposes
drawing from `{potential_misuse_concerns_list_csv}`.
* For each concern in `{potential_misuse_concerns_list_csv}`
elaborate on the pathway from civilian application to potential misuse.
**3. Ethical Dilemmas and Concerns**
* **Responsibility of Innovators/Engineers**: Discuss the ethical obligations of those developing such technologies.
* **Risk of Unintended Escalation**: How could the technology contribute to instability or an arms race if misused?
* **Accessibility and Proliferation**: How easily could the technology or knowledge to replicate it spread to actors with malicious intent?
* **Difficulty in Control/Verification**: Once developed
how hard is it to monitor or control its use or prevent its misuse?
* **Impact on Human Rights**: Potential for the technology to be used in ways that violate human rights (e.g.
surveillance
autonomous weapons if applicable).
**4. Assessment of Potential Harms (based on `{potential_misuse_concerns_list_csv}`)**
* Summarize the potential severity and nature of harms associated with the identified misuses.
**5. Proposed Safeguards and Mitigation Strategies**
* **Technical Safeguards**: Are there ways to design the technology to make misuse more difficult (e.g.
built-in limitations
usage restrictions
tamper-proofing
tracking mechanisms)?
* **Policy and Regulatory Safeguards**: Suggestions for governance frameworks
export controls
international treaties
or ethical oversight bodies that could mitigate risks.
* **Transparency and Open Dialogue**: Importance of public discussion and engagement with policymakers and ethicists throughout the technology's lifecycle.
* **End-User Vetting and Agreements**: Potential for controlling distribution to responsible parties.
**6. Conclusion and Recommendation**
* Summarize the key ethical risks associated with the dual-use potential of `{technology_description_and_capabilities}`.
* Provide a concluding thought on whether development should proceed
and if so
under what ethical conditions or with what mandatory safeguards.
* Suggest if a more comprehensive ethical review by a dedicated committee is warranted.
**IMPORTANT**: This is a PRELIMINARY assessment. The aim is to raise awareness and stimulate deeper ethical reflection
not to provide a definitive judgment. Focus on balancing innovation with responsibility.
- Lo mejor para: Evaluar las tecnologías mecánicas de doble uso para detectar los riesgos éticos y el potencial de uso indebido orientar a los ingenieros en la innovación responsable y proponer salvaguardias.
- Optimización del diseño experimental
- Ingeniería mecánica
AI Prompt to Crítica del plan experimental y sugerencias de mejora
- Análisis del diseño, Evaluación del diseño, Optimización del diseño, Mejora de procesos, Seguro de calidad, Control de calidad, Análisis estadístico, Validación
Esta solicitud pide a la IA que analice un diseño experimental en ingeniería mecánica, identificando los puntos débiles y proponiendo mejoras detalladas para aumentar la validez, fiabilidad y eficacia. El usuario introduce la descripción del plan experimental y las variables clave.
Salida:
- Texto
- no requiere Internet en directo
- Campos: {plan_experimental} {variables_clave}
Critically analyze the following mechanical engineering experimental plan: {experimental_plan}. Consider the key variables: {key_variables}. Identify potential flaws or limitations in design, controls, sample size, measurement methods, and data collection. Suggest specific improvements or alternative approaches to increase validity, reliability, and efficiency. Present your analysis in a numbered list with clear rationale for each suggestion.
- Lo mejor para: Lo mejor para optimizar los montajes experimentales y obtener resultados más fiables y válidos.
- Asistencia para propuestas de subvención y redacción científica
- Ingeniería mecánica
AI Prompt to Borrador de la Sección de Significación de la Propuesta de Subvención
- Fabricación aditiva, Diseño para fabricación aditiva (DfAM), Innovación, Ingeniería Mecánica, Desarrollo de productos, Creación de prototipos, Investigación y desarrollo, Prácticas de sostenibilidad, Propuesta de valor
Redacta las secciones "Importancia" e "Innovación" de una propuesta de subvención para ingeniería mecánica, destacando la novedad del proyecto, la brecha de investigación que aborda y su impacto potencial. Este ejercicio ayuda a los ingenieros a articular el valor fundamental del trabajo que proponen. El resultado es un texto con formato Markdown.
Salida:
- Markdown
- no requiere Internet en directo
- Campos: {título_del_proyecto} {enunciado_del_problema_de_investigación} {resolución_propuesta} {lista_de_aspectos_innovadores_clave_csv}
Act as a Scientific Writing Assistant specializing in engineering grant proposals.
Your TASK is to draft the 'Significance' and 'Innovation' sections (or a combined 'Significance and Innovation' section) for a grant proposal titled '`{project_title}`'.
The draft should clearly articulate the importance of the `{research_problem_statement}`
the novelty of the `{proposed_solution_summary}`
and the potential impact of the research
drawing upon the `{key_innovative_aspects_list_csv}` (CSV string: 'Aspect_ID
Description_of_Innovation').
**DRAFT SECTIONS (MUST be Markdown format):**
**`{project_title}`**
**Significance**
1. **Critical Need/Problem Statement**:
* Elaborate on the `{research_problem_statement}`. Clearly define the existing challenge
knowledge gap
or unmet need in the field of mechanical engineering that this project addresses.
* Explain the current limitations or drawbacks of existing approaches or technologies.
* Quantify the problem if possible (e.g.
'Current methods result in X% energy loss'
'Failures due to Y cost the industry $Z annually').
2. **Impact if Successful**:
* Describe the potential impact of successfully completing this project. How will the `{proposed_solution_summary}` advance scientific knowledge
technological capability
or address societal needs?
* Who will benefit from this research (e.g.
specific industries
researchers
society at large)?
* Discuss broader impacts
such as contributions to education
diversity
or economic development
if applicable.
3. **Relevance to Funder's Mission (Generic - user to tailor if funder is known)**:
* Briefly connect the project's goals to typical missions of funding agencies focused on scientific and technological advancement (e.g.
advancing fundamental knowledge
fostering innovation
enhancing national competitiveness
solving critical societal problems).
**Innovation**
1. **Novelty of Approach/Concept**:
* Clearly explain what is fundamentally new and innovative about the `{proposed_solution_summary}` and the project's overall approach.
* Refer to specific points from `{key_innovative_aspects_list_csv}`. For each innovative aspect:
* Describe the innovation in detail.
* Explain how it departs from or improves upon current paradigms
theories
methods
or technologies.
2. **Advancement Beyond Current State-of-the-Art**:
* Contrast the proposed work with existing methods
highlighting the advancements it offers.
* Why is this approach likely to be more effective
efficient
or transformative than current alternatives?
3. **Potential for Paradigm Shift (if applicable)**:
* If the project has the potential to significantly change the way research is conducted or problems are solved in this field
articulate this potential.
**Overall Summary of Significance and Innovation**:
* A brief concluding paragraph that powerfully reiterates why this project is important
innovative
and worthy of funding.
**IMPORTANT**: The tone should be persuasive
confident
and scholarly. Ensure clear connections between the problem
the proposed innovative solution
and the expected impact. Avoid jargon where possible or explain it.
- Ideal para: Ayudar a los ingenieros mecánicos a redactar secciones convincentes sobre importancia e innovación para las propuestas de subvención, garantizando una articulación clara del valor y la novedad de la investigación.
- Optimización del diseño experimental
- Ingeniería mecánica
AI Prompt to Generador de diseño experimental óptimo
- Diseño para fabricación aditiva (DfAM), Diseño para la fabricación (DfM), Ingeniería Mecánica, Optimización de procesos, Seguro de calidad, Control de calidad, Investigación y desarrollo, Análisis estadístico
Este mensaje indica a la IA que diseñe un experimento óptimo para investigar los parámetros de ingeniería mecánica especificados. El usuario proporciona la pregunta de investigación, las variables a probar y las restricciones. La IA devuelve un plan experimental completo con grupos de control, tamaños de muestra y estrategias de medición.
Salida:
- Markdown
- no requiere Internet en directo
- Campos: {pregunta_de_investigación} {variables} {limitaciones}
Design an optimal experimental plan for the mechanical engineering research question: {research_question}. The variables to be tested are: {variables}. Consider the following constraints: {constraints}. Provide a detailed plan including experimental setup, control groups, number of samples, measurement techniques, data collection methods, and statistical analysis approach. Format your response using markdown with sections and bullet points. Emphasize efficiency and validity in your design.
- Lo mejor para: Lo mejor para generar experimentos de ingeniería mecánica completos y estadísticamente sólidos.
- Asistencia para propuestas de subvención y redacción científica
- Ingeniería mecánica
AI Prompt to Generador de resúmenes de informes técnicos
- Mejora continua, Diseño para fabricación aditiva (DfAM), Ingeniería Mecánica, Metodología, Mejora de procesos, Gestión de proyectos, Gestión de calidad, Investigación y desarrollo, Prácticas de sostenibilidad
Genera un resumen conciso e informativo para un informe técnico basado en las secciones clave del mismo. Esta función ayuda a los ingenieros a resumir rápidamente su trabajo para darle mayor difusión. El resultado es un resumen en texto sin formato.
Salida:
- Texto
- no requiere Internet en directo
- Campos: {título_informe} {resumen_objetivos_del_proyecto} {resumen_metodología_utilizada} {resultados_clave_y_resumen_conclusiones}
Act as a Technical Editor specializing in engineering reports.
Your TASK is to generate a concise and informative abstract for a technical report titled '`{report_title}`'.
The abstract should be based on the following summaries provided by the user:
* `{project_objectives_summary}`: A brief statement of the project's goals.
* `{methodology_used_summary}`: A concise description of the methods
tools
or approaches employed.
* `{key_results_and_conclusions_summary}`: A summary of the most important findings and the main conclusions drawn from the project.
**ABSTRACT GENERATION GUIDELINES:**
The abstract MUST be a single paragraph
typically between 150-250 words (though this is a guideline
quality over strict length).
It should be structured to include the following elements seamlessly:
1. **Background/Purpose (derived from `{project_objectives_summary}` and `{report_title}`):**
* Start with a sentence or two that introduces the context or purpose of the work described in '`{report_title}`' and its main objectives from `{project_objectives_summary}`.
2. **Methodology (derived from `{methodology_used_summary}`):**
* Briefly describe the key methods
experimental procedures
simulation techniques
or analytical approaches used
as outlined in `{methodology_used_summary}`. Avoid excessive detail; focus on what was done.
3. **Key Results (derived from `{key_results_and_conclusions_summary}`):**
* Highlight the most significant findings or outcomes of the project. Quantify results where possible and impactful (e.g.
'a 25% improvement in efficiency was observed'
'the material exhibited a tensile strength of X MPa').
4. **Main Conclusions (derived from `{key_results_and_conclusions_summary}`):**
* State the primary conclusions drawn from the results. What is the overall significance of the findings?
5. **Keywords (Optional but Recommended - AI to suggest 3-5 based on content):**
* If appropriate
the AI can suggest a few keywords at the end of the abstract text
prefixed with 'Keywords:'. This is a secondary task.
**Output Format:**
Plain text
suitable for direct inclusion in a technical report.
**Example Abstract Structure (Conceptual):**
`This report
'`{report_title}`'
details an investigation aimed at [paraphrase/combine from `{project_objectives_summary}`]. The study employed [summarize from `{methodology_used_summary}`
e.g.
'a combination of finite element analysis and experimental validation' or 'a novel design algorithm']. Key findings indicate [summarize key quantitative or qualitative results from `{key_results_and_conclusions_summary}`]. It was concluded that [summarize main conclusions from `{key_results_and_conclusions_summary}`
highlighting significance].`
`Keywords: [Suggested Keyword1
Suggested Keyword2
Suggested Keyword3]`
**IMPORTANT**: The abstract MUST be self-contained and understandable without reference to the full report. It should be accurate
concise
and highlight the most compelling aspects of the work. Avoid using jargon that isn't commonly understood or defined within the abstract's context.
- Ideal para: Generar resúmenes concisos y bien estructurados para informes técnicos que ayuden a los ingenieros mecánicos a resumir eficazmente los objetivos, métodos, resultados y conclusiones de los proyectos.
¿Estamos asumiendo que la IA siempre puede generar las mejores indicaciones en ingeniería mecánica? ¿Cómo se generan?
¿Hará la IA innecesarios a los ingenieros humanos?
Publicaciones relacionadas
Últimas publicaciones y patentes sobre óxidos de alta entropía (HEO)
Últimas publicaciones y patentes sobre MXenos
Últimas publicaciones y patentes sobre puntos cuánticos
Últimas publicaciones y patentes sobre perovskitas
Últimas publicaciones y patentes sobre grafeno
45+ Trucos científicos para juegos y marketing: Trucos basados en datos y estadísticas