
Las herramientas de IA en línea están transformando rápidamente la ingeniería mecánica al aumentar las capacidades humanas en diseño, análisis, fabricacióny mantenimiento. Estos sistemas de IA pueden procesar grandes cantidades de datos, identificar patrones complejos y generar soluciones novedosas mucho más rápido que los métodos tradicionales. Por ejemplo, la IA puede ayudarle a optimizar el rendimiento y la fabricabilidad de los diseños, acelerar simulaciones complejas, predecir las propiedades de los materiales y automatizar una amplia gama de tareas analíticas.
Las indicaciones que se ofrecen a continuación ayudarán, por ejemplo, en el diseño generativo, acelerarán las simulaciones (FEA/CFD), ayudarán en el mantenimiento predictivo en el que la IA analiza los datos de los sensores de la maquinaria para prever posibles fallos, lo que permite un mantenimiento proactivo y minimiza el tiempo de inactividad, ayudarán en la selección de materiales y mucho más.
- Esta página es específica para un dominio. Si lo desea, puede realizar búsquedas en todos los dominios y según todos los criterios en nuestro >. Directorio AI Prompts <, dedicado a diseño de producto y innovación.
- Dados los recursos del servidor y el tiempo, los propios avisos están reservados sólo a los miembros registrados, y no son visibles a continuación si no se ha iniciado sesión. Puede registrarse, 100% gratis:
- Optimización del diseño experimental
- Ingeniería mecánica
AI Prompt to Grupo de control Sugerencia para la prueba de material
- Materiales, Ingeniería Mecánica, Propiedades mecánicas, Seguimiento del rendimiento, Seguro de calidad, Control de calidad, Análisis estadístico, Tratamiento de la superficie, Métodos de ensayo
Sugiere grupos de control y mediciones de referencia adecuados para un estudio experimental sobre un nuevo material o tratamiento de superficie en una aplicación mecánica que garantice comparaciones válidas y conclusiones fiables. Esta sugerencia ayuda a los ingenieros a diseñar protocolos de ensayo de materiales más sólidos. El resultado es una recomendación basada en texto.
Salida:
- Texto
- no requiere Internet en directo
- Campos: {descripción_del_material_de_prueba_o_del_tratamiento} {texto_de_las_condiciones_experimentales} {performance_metrics_tobe_measured_list_csv}
Act as an Experimental Design Specialist in Materials Science and Engineering.
Your TASK is to recommend appropriate control groups and baseline measurements for an experimental study involving `{test_material_or_treatment_description}` under `{experimental_conditions_text}`
where `{performance_metrics_to_be_measured_list_csv}` (CSV: 'Metric_Name
Units') are the key outputs.
The goal is to ensure that any observed changes in performance can be confidently attributed to the `{test_material_or_treatment_description}`.
**RECOMMENDATIONS FOR CONTROL GROUPS AND BASELINE MEASUREMENTS:**
**1. Understanding the Core Investigation:**
* The primary goal is to evaluate the effect of `{test_material_or_treatment_description}`.
* The `{experimental_conditions_text}` (e.g.
'High-temperature tensile testing at 600°C'
'Cyclic fatigue testing under 200 MPa load for 10^6 cycles'
'Wear testing against a steel counterface with 10N load for 5 hours') define the environment.
* The `{performance_metrics_to_be_measured_list_csv}` (e.g.
'Ultimate_Tensile_Strength_MPa
Elongation_Percent'
'Fatigue_Life_Cycles'
'Wear_Rate_mm3_Nm') are the indicators of performance.
**2. Recommended Control Group(s):**
* **A. Untreated/Standard Material Control:**
* **Description**: Samples made from the SAME BASE MATERIAL as the `{test_material_or_treatment_description}` but WITHOUT the specific new material feature or treatment being tested. If the test involves a new alloy
the control might be the conventional alloy it aims to replace or a version of the new alloy without a critical processing step.
* **Justification**: This is the MOST CRITICAL control. It allows for direct comparison to determine if the `{test_material_or_treatment_description}` provides any benefit (or detriment) over the standard or untreated state.
* **Processing**: These control samples should
as much as possible
undergo all other processing steps (e.g.
heat treatments
machining) that the test samples experience
EXCEPT for the specific treatment/feature being evaluated.
* **B. (Optional
if applicable) Benchmark/Reference Material Control:**
* **Description**: Samples made from a well-characterized
industry-standard benchmark material that is commonly used in similar applications or for which extensive performance data exists.
* **Justification**: This allows comparison against a known quantity and can help validate the testing procedure if the benchmark material behaves as expected. It also positions the performance of the `{test_material_or_treatment_description}` within the broader field.
* **C. (Optional
if treatment involves application) Placebo/Sham Treatment Control:**
* **Description**: If the treatment involves a complex application process (e.g.
a coating applied via a specific sequence of steps
some of which might independently affect the material)
a sham control experiences all application steps EXCEPT the active treatment ingredient/process.
* **Justification**: Helps to isolate the effect of the active treatment component from the effects of the application process itself.
**3. Baseline Measurements (Pre-Test Characterization):**
* For ALL samples (both test and control groups)
consider performing and recording the following baseline measurements BEFORE subjecting them to the main `{experimental_conditions_text}`:
* **Initial Microstructure Analysis**: (e.g.
Optical microscopy
SEM) To document the starting state
grain size
presence of defects
or treatment-induced surface changes.
* **Initial Hardness Testing**: A quick way to check for consistency or initial effects of a surface treatment.
* **Precise Dimensional Measurements**: Especially important for wear or deformation studies.
* **Surface Roughness**: If surface properties are critical or affected by the treatment.
* **Compositional Analysis (Spot Checks)**: To verify material or coating composition if it's a key variable.
* **Justification**: Baseline data helps confirm initial sample consistency
can reveal pre-existing flaws
and provides a reference point for assessing changes after testing.
**4. Experimental Considerations:**
* **Sample Size**: Ensure a sufficient number of samples in each group (test and control) for statistical validity.
* **Randomization**: If there are variations in the testing apparatus or over time
randomize the testing order of samples from different groups.
* **Identical Test Conditions**: CRITICAL - All groups (test and control) MUST be subjected to the EXACT SAME `{experimental_conditions_text}` and measurement procedures for the `{performance_metrics_to_be_measured_list_csv}`.
**Summary**: By including these control groups and baseline measurements
the experiment will be better able to isolate the true effect of the `{test_material_or_treatment_description}` and produce more reliable and defensible conclusions.
- Ideal para: Orientar a los ingenieros mecánicos en la selección de grupos de control y mediciones de referencia adecuados para los ensayos de materiales, garantizando la validez experimental y una interpretación fiable de los resultados.
- Modelización predictiva
- Ingeniería mecánica
AI Prompt to Modelo de estimación de la probabilidad de fallo
- Análisis de fallos, Análisis de modos de fallo y efectos (FMEA), Mantenimiento, Ingeniería Mecánica, Algoritmos de mantenimiento predictivo, Análisis de riesgos, Gestión de riesgos, Análisis estadístico
Este mensaje indica a la IA que desarrolle un modelo predictivo que estime la probabilidad de fallo de los componentes mecánicos basándose en las características de entrada y en los datos históricos de fallos proporcionados en formato CSV. Incluye una explicación del modelo e instrucciones de uso.
Salida:
- Python
- no requiere Internet en directo
- Campos: {csv_failure_data} {component_features}
Using the provided CSV dataset of historical failures: {csv_failure_data} and the list of component features: {component_features}, build a predictive model estimating failure probability of mechanical components. Steps: 1) Data preprocessing 2) Feature importance analysis 3) Model training (e.g., logistic regression, random forest) 4) Model evaluation 5) Provide Python code with comments explaining usage. Return only the code and brief explanations.
- Lo mejor para: Lo mejor para predecir la fiabilidad de los componentes y programar el mantenimiento
- Modelización predictiva
- Ingeniería mecánica
AI Prompt to Biomechanical Response Prediction for Materials
- Biomateriales, Diseño para fabricación aditiva (DfAM), Método de los elementos finitos (MEF), Ciencia de los materiales, Ingeniería Mecánica, Propiedades mecánicas, Algoritmos de mantenimiento predictivo, Ingeniería estructural
This prompt requests the AI to predict biomechanical responses of materials under specified loading conditions. The user inputs material properties and load parameters, and the AI outputs a detailed response model.
Salida:
- LaTeX
- no requiere Internet en directo
- Fields: {material_properties} {load_conditions}
Predict the biomechanical response of a material with the following properties: {material_properties}, subjected to load conditions: {load_conditions}. Include stress-strain behavior, deformation, and failure criteria. Present the response model using LaTeX formatted equations and explanations. Highlight assumptions and boundary conditions clearly.
- Best for: Best for modeling mechanical behavior of materials under biomechanical loads
- Análisis de las causas
- Ingeniería mecánica
AI Prompt to Failure Root Cause Hypothesis Generator
- Mejora continua, Análisis de fallos, Análisis de modos de fallo y efectos (FMEA), Manufactura esbelta, Técnicas de resolución de problemas, Mejora de procesos, Gestión de calidad, Análisis de las causas, Seis Sigma
This prompt directs the AI to generate plausible root cause hypotheses for a mechanical failure event based on a detailed failure description and observed symptoms provided by the user.
Salida:
- Texto
- no requiere Internet en directo
- Fields: {failure_description} {observed_symptoms}
Analyze the following mechanical failure description: {failure_description}, along with observed symptoms: {observed_symptoms}. Generate a list of 5 plausible root cause hypotheses ranked by likelihood. For each hypothesis, provide supporting rationale and suggest diagnostic tests or inspections to confirm or rule out the cause. Format the output as a numbered list with clear headings.
- Best for: Best for initial investigation and narrowing down failure causes
- Análisis de las causas
- Ingeniería mecánica
AI Prompt to Fault Tree Analysis Builder
- Análisis de fallos, Análisis de modos de fallo y efectos (FMEA), Análisis del árbol de fallos (FTA), Ingeniería Mecánica, Mejora de procesos, Control de calidad, Gestión de calidad, Análisis de riesgos, Gestión de riesgos
This prompt requests the AI to construct a fault tree analysis diagram in text format for a given mechanical system failure event. The user provides the failure event description and components involved.
Salida:
- Markdown
- no requiere Internet en directo
- Fields: {failure_event} {system_components}
Construct a fault tree analysis for the mechanical failure event described as: {failure_event}. Consider the following system components: {system_components}. Present the fault tree in markdown using indentation and bullet points to represent logical AND/OR gates and failure paths. Include explanations of each branch and possible root causes. Use uppercase for failure events and lowercase for components.
- Best for: Best for visualizing failure propagation and dependencies in mechanical systems
- Análisis de las causas
- Ingeniería mecánica
AI Prompt to Failure Mode Prioritization Matrix
- Mejora continua, Medidas correctoras, Análisis de fallos, Análisis de modos de fallo y efectos (FMEA), Mejora de procesos, Control de calidad, Gestión de calidad, Análisis de riesgos, Gestión de riesgos
This prompt asks the AI to create a failure mode prioritization matrix based on a CSV input of failure modes, their severity, occurrence, and detection ratings. It helps prioritize root causes for mechanical failures.
Salida:
- CSV
- no requiere Internet en directo
- Fields: {csv_failure_modes}
Using the following CSV data of failure modes with columns: Failure_Mode, Severity, Occurrence, Detection: {csv_failure_modes}, calculate Risk Priority Numbers (RPN) for each mode. Sort the failure modes by decreasing RPN and generate a prioritization matrix. Output a CSV with columns: Failure_Mode, Severity, Occurrence, Detection, RPN, Priority_Rank. Provide a brief summary explaining the top 3 prioritized failure modes and recommendations for mitigation.
- Best for: Best for quantitatively prioritizing failure investigations and corrective actions
- Análisis de las causas
- Ingeniería mecánica
AI Prompt to Root Cause Analysis Report Generator
- Mejora continua, Medidas correctoras, Análisis de fallos, Manufactura esbelta, Mejora de procesos, Seguro de calidad, Gestión de calidad, Análisis de las causas, Control estadístico de procesos (CEP)
This prompt instructs the AI to generate a detailed root cause analysis report for a mechanical failure incident based on a provided incident summary, test results, and inspection findings. It synthesizes information into a structured document.
Salida:
- Markdown
- no requiere Internet en directo
- Fields: {incident_summary} {test_results} {inspection_findings}
Generate a comprehensive root cause analysis report for the mechanical failure incident described below. Incident Summary: {incident_summary}. Test Results: {test_results}. Inspection Findings: {inspection_findings}. Structure the report with sections: Executive Summary, Problem Description, Analysis Methodology, Root Cause Identification, Recommendations for Prevention, and Conclusion. Use markdown formatting with headings and bullet points where appropriate. Emphasize clarity, technical accuracy, and actionable insights.
- Best for: Best for producing formal, structured root cause analysis documentation
- Consideraciones éticas y análisis de impacto
- Ingeniería mecánica
AI Prompt to Ethical Framework for Autonomous Machinery
- Sistemas avanzados de asistencia al conductor (ADAS), Inteligencia Artificial (IA), Vehículo autónomo, Pensamiento de diseño, Diseño centrado en el ser humano, Gestión de riesgos, Robótica, Seguridad
Generates a framework for ethical considerations in designing autonomous mechanical systems focusing on safety accountability and decision-making in unforeseen scenarios. This prompt helps engineers proactively address ethical challenges during the design phase of complex machinery. The output is a structured markdown document.
Salida:
- Markdown
- no requiere Internet en directo
- Fields: {autonomous_system_type} {operational_environment_description} {key_decision_making_scenarios_csv}
Act as an Ethics Advisor specializing in AI and Autonomous Systems in Mechanical Engineering.
Your TASK is to generate a structured ethical framework for the development and deployment of an `{autonomous_system_type}` operating in `{operational_environment_description}`.
The framework should address key ethical principles and provide guidance for handling scenarios listed in `{key_decision_making_scenarios_csv}` (a CSV string like 'Scenario_ID
Description
Potential_Conflict
e.g. S1
Obstacle_Avoidance
Prioritize_occupant_safety_vs_pedestrian_safety').
**FRAMEWORK STRUCTURE (MUST be Markdown format):**
**1. Introduction**
* Purpose of the Ethical Framework for `{autonomous_system_type}`.
* Scope of application considering `{operational_environment_description}`.
**2. Core Ethical Principles** (Define and explain relevance for `{autonomous_system_type}`)
* **Safety & Non-Maleficence**: Minimizing harm.
* **Accountability & Responsibility**: Who is responsible in case of failure?
* **Transparency & Explainability**: How are decisions made by the system understandable?
* **Fairness & Non-Discrimination**: Avoiding bias in decision-making.
* **Privacy**: Data collection and usage.
* **Human Oversight**: Levels of human control and intervention.
**3. Guidelines for Decision-Making in Critical Scenarios**
* For EACH scenario provided in `{key_decision_making_scenarios_csv}`:
* **Scenario Analysis**: Briefly describe the ethical dilemma posed.
* **Primary Ethical Principle(s) at Stake**: Identify which of the above principles are most relevant.
* **Recommended Approach/Hierarchy**: Suggest a decision-making logic or prioritization. Clearly state any trade-offs.
* **Justification**: Explain the reasoning behind the recommended approach based on ethical principles.
**4. Design and Development Recommendations**
* Specific design considerations for `{autonomous_system_type}` to embed ethical behavior (e.g.
fail-safe mechanisms
auditable logs
bias testing).
**5. Operational and Deployment Considerations**
* Monitoring ethical performance post-deployment.
* Procedures for addressing ethical breaches or unforeseen negative consequences.
**IMPORTANT**: The framework should be actionable and provide clear guidance for engineers. The discussion of scenarios from `{key_decision_making_scenarios_csv}` is CRUCIAL.
- Best for: Proactively developing ethical guidelines for autonomous mechanical systems helping engineers navigate complex moral decision-making in design and operation.
- Consideraciones éticas y análisis de impacto
- Ingeniería mecánica
AI Prompt to Esquema de la evaluación del impacto ambiental del ciclo de vida
- Economía circular, Fabricación respetuosa con el medio ambiente, Impacto ambiental, Evaluación del impacto ambiental, Ciclo de vida, Análisis del ciclo de vida (ACV), Prácticas de sostenibilidad, Desarrollo sostenible, Diseño de productos sostenibles
Describe las etapas y consideraciones clave para realizar una evaluación del impacto ambiental (ECV) del ciclo de vida de un nuevo producto mecánico. Esta guía ayuda a los ingenieros a estructurar sus esfuerzos de ACV identificando las categorías de impacto que necesitan datos y las oportunidades de mitigación. El resultado es un documento de marcado que detalla el plan de ACV.
Salida:
- Markdown
- requiere Internet en directo
- Campos: {nombre_y_función_del_producto} {lista_de_materiales_csv} {texto_sobre_los_procesos_de_fabricación} {texto_fase_de_uso_y_eliminación_prevista}
Act as an Environmental Engineering Consultant specializing in Lifecycle Assessments (LCA) for mechanical products.
Your TASK is to generate a structured OUTLINE for conducting a Lifecycle Environmental Impact Assessment for `{product_name_and_function}`.
Consider the product's composition from `{bill_of_materials_csv}` (CSV string: 'Material
Quantity
Source_Region_if_known')
its `{manufacturing_processes_overview_text}`
and its `{expected_use_phase_and_disposal_text}`.
You MAY use live internet to identify common impact assessment tools
databases (e.g.
Ecoinvent
GaBi)
and relevant ISO standards (e.g.
ISO 14040/14044).
**LCA OUTLINE STRUCTURE (MUST be Markdown format):**
**1. Goal and Scope Definition**
* **1.1. Purpose of the LCA**: (e.g.
Identify environmental hotspots
Compare with alternative designs
Eco-labeling).
* **1.2. Product System Description**: Define `{product_name_and_function}`.
* **1.3. Functional Unit**: Quantified performance of the product system (e.g.
'Provide X amount of torque for Y hours'
'Manufacture Z parts').
* **1.4. System Boundaries**: Detail what stages are INCLUDED and EXCLUDED (Cradle-to-Grave
Cradle-to-Gate
Gate-to-Gate). Justify exclusions.
* Raw Material Acquisition (based on `{bill_of_materials_csv}`).
* Manufacturing & Assembly (based on `{manufacturing_processes_overview_text}`).
* Distribution/Transportation.
* Use Phase (based on `{expected_use_phase_and_disposal_text}`).
* End-of-Life (Disposal/Recycling
based on `{expected_use_phase_and_disposal_text}`).
* **1.5. Allocation Procedures** (if dealing with multi-output processes or recycled content).
* **1.6. Impact Categories Selection**: (e.g.
Global Warming Potential (GWP
kg CO2 eq)
Acidification Potential
Eutrophication Potential
Ozone Depletion Potential
Smog Formation
Resource Depletion
Water Footprint). Select relevant categories for this product type.
* **1.7. LCA Methodology & Software/Databases**: (e.g.
CML
ReCiPe
TRACI. Mention common software like SimaPro
GaBi
openLCA
and databases like Ecoinvent).
**2. Life Cycle Inventory Analysis (LCI)**
* **2.1. Data Collection Plan**: For each life cycle stage:
* Identify required input data (energy
materials
water
transport) and output data (emissions
waste).
* Data sources (primary vs. secondary
from `{bill_of_materials_csv}`
literature
databases).
* **2.2. Data Quality Requirements** (e.g.
precision
completeness
representativeness).
**3. Life Cycle Impact Assessment (LCIA)**
* **3.1. Classification**: Assigning LCI results to selected impact categories.
* **3.2. Characterization**: Calculating category indicator results (e.g.
converting greenhouse gas emissions into CO2 equivalents).
* **3.3. Normalization (Optional)**: Expressing impact indicator results relative to a reference value.
* **3.4. Weighting (Optional
and to be used with caution)**: Assigning weights to different impact categories.
**4. Life Cycle Interpretation**
* **4.1. Identification of Significant Issues**: Hotspot analysis.
* **4.2. Evaluation**: Completeness
sensitivity
and consistency checks.
* **4.3. Conclusions
Limitations
and Recommendations for Mitigation** (e.g.
material substitution
process optimization
design for disassembly).
**IMPORTANT**: This outline should guide an engineer in planning a comprehensive LCA. Emphasize the iterative nature of LCA and the importance of data quality.
- Ideal para: Estructurar la evaluación del impacto ambiental del ciclo de vida de los productos mecánicos, lo que permite a los ingenieros evaluar y mitigar sistemáticamente las huellas ambientales.
- Consideraciones éticas y análisis de impacto
- Ingeniería mecánica
AI Prompt to Análisis del impacto social de la automatización
- Gestión del cambio, Automatización industrial, Ingeniería Mecánica, Prácticas de sostenibilidad
Analiza las posibles repercusiones sociales, como los cambios en el empleo, los cambios en la demanda de cualificaciones y los problemas de accesibilidad derivados de la implantación de una tecnología de automatización específica en un sector de la ingeniería mecánica. Este ejercicio ayuda a los ingenieros a tener en cuenta las consecuencias sociales más amplias. El resultado es un informe basado en texto.
Salida:
- Texto
- requiere Internet en directo
- Campos: {automation_technology_description} {industry_sector_of_application} {geographical_region_context}
Act as a Socio-Technical Analyst specializing in the impacts of automation in engineering fields.
Your TASK is to provide an analysis of the potential societal impacts of implementing `{automation_technology_description}` within the `{industry_sector_of_application}` specifically considering the `{geographical_region_context}`.
You SHOULD use live internet access to gather data on employment trends
skill demands
and relevant socio-economic studies for the specified region and sector.
**SOCIETAL IMPACT ANALYSIS REPORT (Plain Text Format):**
**1. Introduction**
* Overview of the `{automation_technology_description}` and its intended application in the `{industry_sector_of_application}`.
* Brief note on the socio-economic context of `{geographical_region_context}` relevant to automation.
**2. Potential Impacts on Employment**
* **Job Displacement**: Analyze potential for job losses in roles directly affected by the automation. Provide any available statistics or projections for the `{industry_sector_of_application}` in `{geographical_region_context}`.
* **Job Creation**: Analyze potential for new jobs created (e.g.
maintenance of automated systems
programming
data analysis
new roles enabled by the technology).
* **Job Transformation**: How existing roles might change
requiring new skills or responsibilities.
**3. Shifts in Skill Demand**
* **Upskilling/Reskilling Needs**: Identify skills that will become more critical (e.g.
digital literacy
robotics programming
data interpretation
complex problem-solving) and skills that may become obsolete.
* **Impact on Training and Education**: Discuss potential needs for changes in vocational training and engineering curricula in `{geographical_region_context}`.
**4. Economic Impacts**
* **Productivity Gains**: Potential for increased efficiency
output
and competitiveness in the `{industry_sector_of_application}`.
* **Investment Requirements**: Capital costs associated with implementing `{automation_technology_description}`.
* **Distribution of Economic Benefits**: Discuss who is likely to benefit most (e.g.
capital owners
highly skilled labor
consumers). Consider potential for increased inequality.
**5. Accessibility and Equity**
* **Impact on Small vs. Large Businesses**: Can businesses of all sizes in `{geographical_region_context}` adopt this technology
or does it favor larger enterprises?
* **Impact on Different Demographics**: Are there specific groups (e.g.
older workers
specific genders
minority groups) that might be disproportionately affected
positively or negatively?
* **Digital Divide**: Does the technology exacerbate or mitigate the digital divide within the region?
**6. Broader Societal and Ethical Considerations**
* **Worker Well-being**: Impact on job quality
stress levels
and workplace safety.
* **Social Acceptance and Resistance**: Potential for resistance to adoption from workers or the public.
* **Long-term Regional Development**: How might widespread adoption of this technology influence the economic trajectory of `{geographical_region_context}`?
**7. Policy Recommendations / Mitigation Strategies (Brief Suggestions)**
* Proactive measures that could be taken by policymakers
industry
or educational institutions in `{geographical_region_context}` to maximize benefits and mitigate negative impacts (e.g.
retraining programs
social safety nets
investment in education).
**8. Conclusion**
* Summary of key potential societal impacts and a call for responsible implementation.
**Disclaimer**: This analysis is based on publicly available information and general trends. Specific impacts can vary based on the details of implementation.
- Ideal para: Analizar las posibles consecuencias sociales de la automatización en la ingeniería mecánica, como los cambios en el empleo y la demanda de cualificaciones, para contribuir a una adopción responsable de la tecnología.
¿Estamos asumiendo que la IA siempre puede generar las mejores indicaciones en ingeniería mecánica? ¿Cómo se generan?
¿Hará la IA innecesarios a los ingenieros humanos?
Publicaciones relacionadas
Últimas publicaciones y patentes sobre aerogeles y aerografeno
Últimas publicaciones y patentes sobre óxidos de alta entropía (HEO)
Últimas publicaciones y patentes sobre MXenos
Últimas publicaciones y patentes sobre puntos cuánticos
Últimas publicaciones y patentes sobre perovskitas
Últimas publicaciones y patentes sobre grafeno