Heim » Decimal Reduction Time (D-value)

Decimal Reduction Time (D-value)

1920
Thermal sterilization setup with microbial cultures and temperature monitoring in applied microbiology.

The D-value is the time required at a specific temperature to kill 90% (or one log reduction) of a target microorganism population. It is a critical parameter in thermal sterilization, quantifying a microbe’s resistance to heat. For example, if a population of [latex]10^6[/latex] spores has a D-value of 2 minutes, it takes 2 minutes to reduce it to [latex]10^5[/latex].

The D-value, or decimal reduction time, is a cornerstone of thermal processing science, providing a precise measure of an organism’s heat resistance. It is specific to a particular microorganism under a defined set of conditions (temperature, pH, water activity, etc.). The value is derived from a microbial survivor curve, which is a plot of the logarithm of the number of surviving organisms versus the exposure time at a constant temperature. For a first-order reaction, this plot yields a straight line, and the D-value is the negative reciprocal of the slope. Mathematically, it represents the time required for a 90% reduction in the microbial population. For example, a D-value of 1.5 minutes at 121°C ([latex]D_{121}[/latex]) for Clostridium botulinum spores means that for every 1.5 minutes of exposure at that temperature, the population of these spores will decrease by a factor of ten. To achieve a 12-log reduction (a standard for low-acid canned foods, known as the ’12D concept’), the required processing time would be [latex]12 \times D[/latex], or [latex]12 \times 1.5 = 18[/latex] minutes. This ensures an extremely high probability that no viable C. botulinum spores remain. The D-value is critical for designing sterilization processes that are effective enough to ensure safety but not so harsh that they degrade the quality of the product, whether it’s food, a pharmaceutical, or a medical device. Different microorganisms have vastly different D-values; vegetative bacteria are typically much less resistant (lower D-value) than bacterial endospores.

The concept of quantifying thermal resistance emerged from pioneering work in the early 20th century, particularly within the canning industry. Scientists like W.D. Bigelow and C. Olin Ball sought to move beyond simple trial-and-error methods for food preservation. They conducted systematic studies to determine the time and temperature combinations needed to destroy spoilage and pathogenic organisms, most notably Clostridium botulinum. This research geführt to the development of the ‘thermal death time’ (TDT) curve and the formalization of the D-value and the related Z-value (which describes the temperature dependence of the D-value). This quantitative approach transformed food processing from an art into a science, enabling the safe, large-scale production of canned foods and forming the basis for modern sterilization Validierung across multiple industries. It provided a universal language to describe microbial resistance and process lethality.

UNESCO Nomenclature: 2401
– Microbiology

Typ

Quantitative Metric

Disruption

Substantial

Verwendung

Widespread Use

Precursors

  • arrhenius equation describing temperature dependence of reaction rates
  • first-order reaction kinetics
  • studies by bigelow and esty on thermal death of bacteria

Anwendungen

  • designing and validating pasteurization and sterilization cycles in the food industry
  • calculating sterilization times for medical devices
  • environmental microbiology studies
  • pharmaceutical manufacturing Prozesskontrolle

Patente:

DAS

Potential Innovations Ideas

!Professionals (100% free) Mitgliedschaft erforderlich

Sie müssen ein Professionals (100% free) Mitglied sein, um auf diesen Inhalt zugreifen zu können.

Jetzt teilnehmen

Sie sind bereits Mitglied? Hier einloggen
Related to: d-value, decimal reduction time, thermal sterilization, microbiology, log reduction, heat resistance, food processing, clostridium botulinum, kinetics, validation.

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert

VERFÜGBAR FÜR NEUE HERAUSFORDERUNGEN
Mechanical Engineer, Project, Process Engineering or R&D Manager
Effektive Produktentwicklung

Kurzfristig für eine neue Herausforderung verfügbar.
Kontaktieren Sie mich auf LinkedIn
Plastic metal electronics integration, Design-to-cost, GMP, Ergonomics, Medium to high-volume devices & consumables, Lean Manufacturing, Regulated industries, CE & FDA, CAD, Solidworks, Lean Sigma Black Belt, medical ISO 13485

Wir suchen einen neuen Sponsor

 

Ihr Unternehmen oder Ihre Institution beschäftigt sich mit Technik, Wissenschaft oder Forschung?
> Senden Sie uns eine Nachricht <

Erhalten Sie alle neuen Artikel
Kostenlos, kein Spam, E-Mail wird nicht verteilt oder weiterverkauft

oder Sie können eine kostenlose Vollmitgliedschaft erwerben, um auf alle eingeschränkten Inhalte zuzugreifen >Hier<

Historical Context

(if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)

Related Invention, Innovation & Technical Principles

Nach oben scrollen

Das gefällt dir vielleicht auch