Heim » Neueste Veröffentlichungen und Patente zu Prompt Engineering

Neueste Veröffentlichungen und Patente zu Prompt Engineering

Schnelles Engineering

Dies ist unsere neueste Auswahl an weltweiten Veröffentlichungen und Patenten in englischer Sprache zum Thema Prompt Engineering, die in zahlreichen wissenschaftlichen Online-Zeitschriften zu den Themen Prompt Engineering, Prompt Design, Kontextualisierung, Prompt Variabilität, Hyperparameter Tuning, Bias Mitigation, Zero-Shot Learning und Little-Shot Learning veröffentlicht wurden.

Patente: nicht aktuell Patent zu diesem speziellen Thema. Versuchen Sie es bitte mit der umfangreichen manuellen Suche in der oben verlinkten Patentdatenbank.

What Have Urban Digital Twins Contributed to Urban Planning and Decision Making? From a Systematic Literature Review Toward a Socio-Technical Research and Development Agenda

Published on 2025-02-13 by Shervin Azadi, Dena Kasraian, Pirouz Nourian, Pieter van Wesemael @MDPI

Abstract: Urban digital twins (UDTs) were first discussed in 2018. Seven years later, we ask: What has been their contribution to urban planning and decision making so far? Here, we systematically review 88 peer-reviewed articles to map and compare UDTs’ ambitions with their realized contributions. Our results indicate that despite the vast technical developments, socio-technical challenges have remained largely unaddressed, causing many of UDTs’ ambitions to remain unrealized.[...]


Our summary: Systematic literature review identifies challenges in realizing the ambitions of Urban Digital Twins for urban planning and decision making, proposing an Augmented Urban Planning agenda.

Urban Digital Twins, Urban Planning, Decision Making, Socio-Technical

Publication

Improving Probability-based Prompt Selection Through Unified Evaluation and Analysis

Published on 2024-05-25 by Sohee Yang, Jonghyeon Kim, Joel Jang, Seonghyeon Ye, Hyunji Lee, Minjoon Seo @MIT

Abstract: Previous works in prompt engineering for large language models have introduced different gradient-free probability-based prompt selection methods that aim to choose the optimal prompt among the candidates for a given task but have failed to provide a comprehensive and fair comparison between each other. In this paper, we propose a unified framework to interpret and evaluate the existing probability-based prompt selection methods by performing extensive experiments on 13 common and diverse NLP ta[...]


Our summary: Evaluation of probability-based prompt selection methods through unified framework, Improving prompt selection effectiveness through combinatorial variants of mutual information, Introducing Calibration by Marginalization method for unbiased prompt selection, Achieving high performance in prompt selection without calibration by maximizing mutual information.

prompt selection, probability-based, unified evaluation, analysis, NLP tasks

Publication

Metric-Free Learning Network with Dual Relations Propagation for Few-Shot Aspect Category Sentiment Analysis

Published on 2024-02-03 by Shiman Zhao, Yutao Xie, Wei Chen, Tengjiao Wang, Jiahui Yao, Jiabin Zheng @MIT

Abstract: Few-shot Aspect Category Sentiment Analysis (ACSA) is a crucial task for aspect-based sentiment analysis, which aims to detect sentiment polarity for a given aspect category in a sentence with limited data. However, few-shot learning methods focus on distance metrics between the query and support sets to classify queries, heavily relying on aspect distributions in the embedding space. Thus, they suffer from overlapping distributions of aspect embeddings caused by irrelevant sentiment noise among[...]


Our summary: Metric-Free Learning Network with Dual Relations Propagation for Few-Shot Aspect Category Sentiment Analysis. Crucial task for aspect-based sentiment analysis. Proposes metric-free method using Dual Relations Propagation. Achieves improvement in accuracy and F1 score.

learning, network, relations, propagation, sentiment

Publication

Inhaltsverzeichnis
    Ajoutez un en-tête pour commencer à générer la table des matières

    DESIGN- oder PROJEKTHERAUSFORDERUNG?
    Maschinenbauingenieur, Projekt- oder F&E-Manager
    Effektive Produktentwicklung

    Kurzfristig für eine neue Herausforderung in Frankreich und der Schweiz verfügbar.
    Kontaktieren Sie mich auf LinkedIn
    Kunststoff- und Metallprodukte, Design-to-Cost, Ergonomie, Mittlere bis hohe Stückzahlen, Regulierte Branchen, CE & FDA, CAD, Solidworks, Lean Sigma Black Belt, Medizin ISO 13485 Klasse II & III

    Wir sind auf der Suche nach einem neuen Sponsor

     

    Ihr Unternehmen oder Ihre Institution beschäftigt sich mit Technik, Wissenschaft oder Forschung?
    > Senden Sie uns eine Nachricht <

    Erhalten Sie alle neuen Artikel
    Kostenlos, kein Spam, E-Mail wird nicht verteilt oder weiterverkauft

    oder Sie können eine kostenlose Vollmitgliedschaft erwerben, um auf alle eingeschränkten Inhalte zuzugreifen >Hier<

    Behandelte Themen: Prompt Engineering, Prompt Design, Kontextualisierung, Prompt Variabilität, Hyperparameter Tuning, Bias Mitigation, Zero-Shot Learning, Few-Shot Learning, Augmented Reality, Machine Learning, Anomaly Detection, Urban Digital Twins, Plant Disease Classification, Linguistic Ambiguity, Text-to-Image Models, ISO/IEC 25010, ISO 9241, ISO/IEC 27001, and ISO 9001.

    1. Fabrice

      Patente schützen Innovatoren, statt sie zu unterdrücken. Es ist der Wettbewerb, der die Innovation vorantreibt, nicht die Gratisgeschenke.

    2. Brecken Morse

      Interessant! Aber fördern die Patente wirklich die Innovation oder beschränken sie nur den Wettbewerb durch die Schaffung von Monopolen?

    Kommentarfunktion geschlossen.

    Verwandte Artikel

    Nach oben scrollen

    Das gefällt dir vielleicht auch