بيت » The Parallel Postulate (Euclid’s 5th postulate)

The Parallel Postulate (Euclid’s 5th postulate)

-300
  • Euclid of Alexandria

Euclid’s fifth postulate, the parallel postulate, is the axiom that defines Euclidean geometry: it states that if a line intersects two other lines, and the interior angles on one side sum to less than two right angles ([latex]\alpha + \beta < 180^\circ[/latex]), then the two lines will eventually intersect on that side. This postulate guarantees a unique parallel line through a point not on a given line.

The Parallel Postulate is arguably the most influential single axiom in the history of geometry. Its perceived complexity compared to the other four led to over two millennia of attempts to prove it from them. This quest was ultimately futile, but it was not a failure. In the early 19th century, mathematicians began to consider the consequences of negating the postulate. This led to the development of two major forms of non-Euclidean geometry.

Hyperbolic geometry, developed by Lobachevsky and Bolyai, assumes that through a point not on a line, there are infinitely many lines parallel to the given line. In this geometry, the sum of angles in a triangle is less than 180 degrees. Elliptic (or Riemannian) geometry, developed by Riemann, assumes there are no parallel lines. Here, the sum of angles in a triangle is greater than 180 degrees. The surface of a sphere is a common model for elliptic geometry. The discovery that these consistent, alternative geometries could exist was a paradigm shift. It demonstrated that Euclidean geometry was not an absolute truth about physical space but one of several possible mathematical structures. This realization was crucial for the development of Albert Einstein’s theory of general relativity, which models spacetime as a curved, non-Euclidean manifold.

UNESCO Nomenclature: 1204
– Geometry

النوع

Abstract System

Disruption

Foundational

الاستخدام

Widespread Use

Precursors

  • Thales’s work on geometry
  • Pythagorean mathematics
  • Plato’s emphasis on axiomatic systems
  • Earlier Greek geometric concepts of lines and angles

التطبيقات

  • urban grid planning
  • perspective drawing in art
  • computer-aided design (CAD) for mechanical parts
  • surveying and cartography
  • robotics path planning on flat surfaces

براءات الاختراع:

NA

Potential Innovations Ideas

!!مستويات !!! العضوية مطلوبة

يجب أن تكون عضوًا !!! مستويات!!! للوصول إلى هذا المحتوى.

انضم الآن

هل أنت عضو بالفعل؟ سجّل الدخول هنا
Related to: parallel postulate, Euclid’s fifth postulate, non-Euclidean geometry, Playfair’s axiom, hyperbolic geometry, elliptic geometry, axioms, geometry

اترك تعليقاً

لن يتم نشر عنوان بريدك الإلكتروني. الحقول الإلزامية مشار إليها بـ *

متاح للتحديات الجديدة
مهندس ميكانيكي، مدير مشروع أو بحث وتطوير
تطوير المنتج الفعال

متاح لتحدي جديد في غضون مهلة قصيرة.
تواصل معي على LinkedIn
تكامل الإلكترونيات المعدنية والبلاستيكية، التصميم حسب التكلفة، ممارسات التصنيع الجيدة (GMP)، بيئة العمل، الأجهزة والمواد الاستهلاكية متوسطة إلى عالية الحجم، الصناعات الخاضعة للتنظيم، شهادات CE وFDA، التصميم بمساعدة الحاسوب (CAD)، Solidworks، الحزام الأسود Lean Sigma، شهادة ISO 13485 الطبية

نحن نبحث عن راعي جديد

 

هل شركتك أو مؤسستك متخصصة في التقنية أو العلوم أو الأبحاث؟
> أرسل لنا رسالة <

احصل على جميع المقالات الجديدة
مجاني، لا يوجد بريد عشوائي، ولا يتم توزيع البريد الإلكتروني ولا إعادة بيعه

أو يمكنك الحصول على عضويتك الكاملة -مجانًا- للوصول إلى جميع المحتويات المحظورة >هنا<

Historical Context

(if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)

Related Invention, Innovation & Technical Principles

Scroll to Top

قد يعجبك أيضاً