بيت » Mohr’s Circle for 3D Stress

Mohr’s Circle for 3D Stress

1882-01-01
  • Christian Otto Mohr
Mohr's circles analysis in continuum mechanics for stress evaluation.

For a general three-dimensional state of stress, the analysis is represented by three Mohr’s circles. These circles are drawn in the [latex]\sigma_n – \tau_n[/latex] plane using the three principal stresses ([latex]\sigma_1, \sigma_2, \sigma_3[/latex]) as diameters. The largest circle, defined by [latex]\sigma_1[/latex] and [latex]\sigma_3[/latex], encloses the other two and determines the absolute maximum shear stress, [latex]\tau_{abs max} = (\sigma_1 – \sigma_3)/2[/latex].

While the 2D Mohr’s circle is common, real-world الإجهاد states are three-dimensional. To analyze a 3D stress state, one first determines the three principal stresses, [latex]\sigma_1 \ge \sigma_2 \ge \sigma_3[/latex], which are the eigenvalues of the 3×3 Cauchy stress tensor. These three values are then used to construct three separate Mohr’s circles. The first circle is drawn between [latex]\sigma_1[/latex] and [latex]\sigma_2[/latex], the second between [latex]\sigma_2[/latex] and [latex]\sigma_3[/latex], and the third, largest circle between [latex]\sigma_1[/latex] and [latex]\sigma_3[/latex].

The stress state ([latex]\sigma_n, \tau_n[/latex]) for any arbitrarily oriented plane at the point will lie within the shaded area bounded by these three circles. A crucial insight from this 3D representation is the determination of the absolute maximum shear stress. Unlike the 2D case where the maximum in-plane shear is the radius, the absolute maximum shear stress for a 3D state is always the radius of the largest circle, given by [latex]\tau_{abs max} = R_{max} = (\sigma_{max} – \sigma_{min})/2 = (\sigma_1 – \sigma_3)/2[/latex]. This value is fundamental for applying failure criteria like the Tresca yield criterion in a general 3D context, as it represents the true maximum shear stress experienced by the material at that point.

UNESCO Nomenclature: 2203
– Classical mechanics

النوع

النظام التجريدي

الاضطراب

تزايدي

الاستخدام

الاستخدام الواسع النطاق

السلائف

  • Cauchy’s 3D stress tensor formulation
  • Eigenvalue analysis for 3×3 matrices
  • Mohr’s original 2D circle concept
  • Lamé’s stress ellipsoid concept

التطبيقات

  • analysis of complex stress states in mechanical components
  • geomechanics for understanding rock الميكانيكا under triaxial stress
  • design of thick-walled pressure vessels
  • aerospace engineering for analyzing fuselage and wing stresses

براءات الاختراع:

NA

أفكار ابتكارات محتملة

!!مستويات !!! العضوية مطلوبة

يجب أن تكون عضوًا !!! مستويات!!! للوصول إلى هذا المحتوى.

انضم الآن

هل أنت عضو بالفعل؟ سجّل الدخول هنا
Related to: 3D stress, Mohr’s circle, principal stresses, absolute maximum shear stress, cauchy stress tensor, triaxial stress, geomechanics, solid mechanics, failure analysis, continuum mechanics.

اترك تعليقاً

لن يتم نشر عنوان بريدك الإلكتروني. الحقول الإلزامية مشار إليها بـ *

متاح للتحديات الجديدة
مهندس ميكانيكي، مشروع، هندسة العمليات أو مدير البحث والتطوير
تطوير المنتج الفعال

متاح لتحدي جديد في غضون مهلة قصيرة.
تواصل معي على LinkedIn
تكامل الإلكترونيات المعدنية والبلاستيكية، التصميم مقابل التكلفة، ممارسات التصنيع الجيدة (GMP)، بيئة العمل، الأجهزة والمواد الاستهلاكية متوسطة إلى عالية الحجم، التصنيع المرن، الصناعات الخاضعة للتنظيم، شهادات CE وFDA، التصميم بمساعدة الحاسوب (CAD)، Solidworks، الحزام الأسود من Lean Sigma، شهادة ISO 13485 الطبية

نحن نبحث عن راعي جديد

 

هل شركتك أو مؤسستك متخصصة في التقنية أو العلوم أو الأبحاث؟
> أرسل لنا رسالة <

احصل على جميع المقالات الجديدة
مجاني، لا يوجد بريد عشوائي، ولا يتم توزيع البريد الإلكتروني ولا إعادة بيعه

أو يمكنك الحصول على عضويتك الكاملة -مجانًا- للوصول إلى جميع المحتويات المحظورة >هنا<

السياق التاريخي

(إذا كان التاريخ غير معروف أو غير ذي صلة، على سبيل المثال "ميكانيكا الموائع"، يتم تقديم تقدير تقريبي لظهوره الملحوظ)

الاختراع والابتكار والمبادئ التقنية ذات الصلة

انتقل إلى الأعلى

قد يعجبك أيضاً