» 高斯的 Egregium 理论

高斯的 Egregium 理论

1827
  • Carl Friedrich Gauss
卡尔-弗里德里希-高斯在历史悠久的办公室环境中计算高斯曲率。

(generate image for illustration only)

Theorema Egregium (Latin for “Remarkable Theorem”) states that the Gaussian curvature of a surface is an intrinsic property. This means it depends only on how distances are measured on the surface itself, not on how the surface is embedded in three-dimensional space. A flat sheet of paper can be rolled into a cylinder but not a sphere without stretching.

Gauss’s Theorema Egregium is a cornerstone of differential geometry. Before Gauss, curvature was typically understood extrinsically, relating to how a surface bends within the ambient 3D space. Gauss discovered a way to compute the curvature using only information available to an imaginary two-dimensional being living on the surface. This intrinsic measure is now called Gaussian curvature.

He showed that the Gaussian curvature [latex]K[/latex] could be expressed entirely in terms of the coefficients of the first fundamental form ([latex]E, F, G[/latex]) and their derivatives. The first fundamental form, [latex]ds^2 = E du^2 + 2F du dv + G dv^2[/latex], defines the metric of the surface—it tells how to measure lengths of curves. Since the metric is intrinsic, the curvature must be as well. This was a profound shift in perspective.

The theorem’s practical implication is that any two surfaces that can be transformed into one another without stretching or tearing (an isometry) must have the same Gaussian curvature at corresponding points. For example, a plane has zero curvature. Since a cylinder can be made by rolling up a plane without distortion, it also has zero Gaussian curvature. A sphere, however, has constant positive curvature, which is why it’s impossible to flatten an orange peel without breaking it. This concept was later generalized by Riemann to higher dimensions, paving the way for Einstein’s theory of general relativity.

UNESCO Nomenclature: 1204
- 几何学

类型

抽象系统

中断

革命

使用方法

广泛使用

前体

  • 欧几里得几何
  • Theory of curves and surfaces
  • Development of calculus by Newton and Leibniz
  • First fundamental form

应用

  • cartography (explains why no flat map of the earth can be perfectly accurate)
  • general relativity (curvature of spacetime is intrinsic)
  • structural engineering (designing shells and curved structures)
  • computer graphics (for texture mapping and surface parameterization)

专利:

NA

潜在的创新想法

级别需要会员

您必须是!!等级!!会员才能访问此内容。

立即加入

已经是会员? 在此登录
Related to: gaussian curvature, intrinsic geometry, theorema egregium, first fundamental form, isometry, surfaces, metric, Gauss.

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

迎接新挑战
机械工程师、项目、工艺工程师或研发经理
有效的产品开发

可在短时间内接受新的挑战。
通过 LinkedIn 联系我
塑料金属电子集成、成本设计、GMP、人体工程学、中高容量设备和耗材、精益制造、受监管行业、CE 和 FDA、CAD、Solidworks、精益西格玛黑带、医疗 ISO 13485

我们正在寻找新的赞助商

 

您的公司或机构从事技术、科学或研究吗?
> 给我们发送消息 <

接收所有新文章
免费,无垃圾邮件,电子邮件不分发也不转售

或者您可以免费获得完整会员资格以访问所有受限制的内容>这里<

历史背景

(如果日期不详或不相关,例如 "流体力学",则对其显著出现的时间作了四舍五入的估计)。

相关发明、创新和技术原理

滚动至顶部

你可能还喜欢