» 同构片

同构片

1950
  • Jean Leray
  • Henri Cartan
  • Jean-Pierre Serre
  • Alexander Grothendieck
数学家的工作空间,重点研究剪子同调学,包括教科书和笔记。

(generate image for illustration only)

Sheaf cohomology 是现代代数几何中研究几何空间全局性质的核心工具。对于空间 [latex]X[/latex] 上的 Sheaf [latex]/mathcal{F}[/latex],同调群 [latex]H^i(X, \mathcal{F})[/latex] 是向量空间,其维度提供了重要的不变式。群 [latex]H^0[/latex] 代表全局截面,而 [latex]i > 0[/latex] 的更高群 [latex]H^i[/latex] 则测量将局部截面拼接成全局截面的障碍。

The intuition behind sheaf cohomology is to measure the failure of a certain ‘local-to-global’ principle. A sheaf is a tool that assigns data (like functions or vector spaces) to open sets of a topological space in a consistent way. The global sections functor, which takes a sheaf [latex]\mathcal{F}[/latex] and returns its group of global sections [latex]\Gamma(X, \mathcal{F})[/latex], is left exact but not always right exact. Sheaf cohomology groups are defined as the right derived functors of the global sections functor. This abstract definition from homological algebra provides a robust computational and theoretical framework.

In practice, [latex]H^1(X, \mathcal{F})[/latex] often classifies certain geometric objects. For example, if [latex]\mathcal{O}^*[/latex] is the sheaf of non-vanishing regular functions, [latex]H^1(X, \mathcal{O}^*)[/latex] classifies line bundles on the scheme [latex]X[/latex]. The vanishing of cohomology groups has strong geometric consequences; for instance, Kodaira’s vanishing theorem states that for ample line bundles on a projective variety in characteristic zero, certain cohomology groups are zero, which has profound implications for the geometry of the variety. Serre’s FAC paper and Grothendieck’s Tohoku paper established sheaf cohomology as the correct language for algebraic geometry, replacing older, more ad-hoc methods.

UNESCO Nomenclature: 1105
- 几何学

类型

抽象系统

中断

革命

使用方法

广泛使用

前体

  • sheaf theory (Jean Leray)
  • homological algebra (Cartan, Eilenberg)
  • de rham cohomology in differential geometry
  • algebraic topology (simplicial and singular homology)
  • čech cohomology

应用

  • generalization of the Riemann-Roch theorem (hirzebruch-riemann-roch)
  • string theory and theoretical physics (calculating states and anomalies)
  • proof of the weil conjectures (deligne)
  • classification of vector bundles and other geometric objects
  • deformation theory (studying how geometric objects can be varied)

专利:

NA

潜在的创新想法

级别需要会员

您必须是!!等级!!会员才能访问此内容。

立即加入

已经是会员? 在此登录
Related to: sheaf cohomology, sheaf, derived functor, global sections, obstruction, Čech cohomology, Serre, Grothendieck.

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

迎接新挑战
机械工程师、项目、工艺工程师或研发经理
有效的产品开发

可在短时间内接受新的挑战。
通过 LinkedIn 联系我
塑料金属电子集成、成本设计、GMP、人体工程学、中高容量设备和耗材、精益制造、受监管行业、CE 和 FDA、CAD、Solidworks、精益西格玛黑带、医疗 ISO 13485

我们正在寻找新的赞助商

 

您的公司或机构从事技术、科学或研究吗?
> 给我们发送消息 <

接收所有新文章
免费,无垃圾邮件,电子邮件不分发也不转售

或者您可以免费获得完整会员资格以访问所有受限制的内容>这里<

历史背景

(如果日期不详或不相关,例如 "流体力学",则对其显著出现的时间作了四舍五入的估计)。

相关发明、创新和技术原理

滚动至顶部

你可能还喜欢