» The Oxidation State Concept (oxidation number)

The Oxidation State Concept (oxidation number)

1938
  • Wendell Mitchell Latimer

The oxidation state, or oxidation number, is a hypothetical charge that an atom would have if all its bonds to different atoms were 100% ionic. It provides a way to track electron transfer in redox reactions. An increase in oxidation state signifies oxidation, while a decrease signifies reduction. This formalism simplifies the analysis of complex chemical reactions.

The oxidation state is a formal tool, not a representation of the actual charge on an atom, especially in covalent compounds where electrons are shared, not fully transferred. A set of rules is used to assign oxidation states. For example, the oxidation state of an atom in its elemental form is 0. For a monatomic ion, it equals the ion’s charge. In compounds, fluorine is always -1, and oxygen is usually -2 (except in peroxides). The sum of oxidation states in a neutral compound is zero, while in a polyatomic ion, it equals the ion’s charge.

Consider potassium permanganate, [latex]KMnO_4[/latex]. We know K is +1 and each O is -2. For the compound to be neutral, the sum of oxidation states must be zero. Let the oxidation state of Mn be x. Then, [latex](+1) + x + 4(-2) = 0[/latex]. Solving this gives [latex]x = +7[/latex]. So, the oxidation state of manganese in permanganate is +7. If this ion participates in a reaction where it is converted to [latex]Mn^{2+}[/latex], the oxidation state of manganese has decreased from +7 to +2, signifying a reduction. This bookkeeping 方法 is indispensable for identifying which species are oxidized and reduced and for balancing the complex equations that describe these reactions.

UNESCO Nomenclature: 2203
– Inorganic chemistry

类型

Abstract System

Disruption

Substantial

使用方法

Widespread Use

Precursors

  • concept of valence
  • lewis structures and electron dot diagrams
  • electronegativity concept by linus pauling

应用

  • balancing redox equations
  • naming inorganic compounds (e.g., iron(iii) oxide)
  • predicting reaction products
  • electrochemistry analysis

专利:

Potential Innovations Ideas

级别需要会员

您必须是!!等级!!会员才能访问此内容。

立即加入

已经是会员? 在此登录
Related to: oxidation state, oxidation number, electron counting, formal charge, redox balancing, inorganic nomenclature, covalent bonds, ionic bonds

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

迎接新挑战
机械工程师、项目或研发经理
有效的产品开发

可在短时间内接受新的挑战。
通过 LinkedIn 联系我
塑料金属电子集成、成本设计、GMP、人体工程学、中高容量设备和耗材、受监管行业、CE 和 FDA、CAD、Solidworks、精益西格玛黑带、医疗 ISO 13485

我们正在寻找新的赞助商

 

您的公司或机构从事技术、科学或研究吗?
> 给我们发送消息 <

接收所有新文章
免费,无垃圾邮件,电子邮件不分发也不转售

或者您可以免费获得完整会员资格以访问所有受限制的内容>这里<

Historical Context

(if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)

Related Invention, Innovation & Technical Principles

滚动至顶部

你可能还喜欢