» 锂离子嵌入机理

锂离子嵌入机理

1980
  • M. Stanley Whittingham
  • John B. Goodenough
  • Akira Yoshino
电化学实验室的锂离子电池拆卸过程。

(generate image for illustration only)

Lithium-ion batteries function via an intercalation mechanism, a reversible insertion of ions into a layered host material. During discharge, ions ([latex]Li^+[/latex]) de-intercalate from a negative electrode (anode), typically graphite, and move through a non-aqueous electrolyte to intercalate into a positive electrode (cathode), typically a metal oxide. Electrons travel through the external circuit, creating current.

The concept of intercalation is central to the success of lithium-ion batteries. Unlike older battery chemistries where the electrodes undergo significant chemical phase changes, intercalation involves lithium ions acting as ‘guests’ that slide into and out of the ‘host’ crystalline structure of the electrode materials. For the anode, the host is typically graphite, which has a layered structure allowing [latex]Li^+[/latex] ions to fit between its graphene sheets, forming [latex]LiC_6[/latex]. For the cathode, the host is a metal oxide, such as lithium cobalt oxide ([latex]LiCoO_2[/latex]), where lithium ions occupy layers between cobalt oxide sheets.

This process is highly reversible and does not dramatically alter the host’s structure, which leads to a long cycle life with minimal degradation. The movement of ions is facilitated by a non-aqueous organic electrolyte, as lithium is highly reactive with water. A micro-porous polymer separator keeps the anode and cathode from touching and short-circuiting while allowing ions to pass through.

During charging, an external voltage forces the process to reverse: lithium ions are extracted from the cathode, travel back across the electrolyte, and re-insert into the graphite anode. The high electrochemical potential of lithium, combined with its low atomic weight, allows for batteries with very high energy density and specific energy, which is why they have revolutionized portable electronics and are enabling the transition to electric vehicles.

UNESCO Nomenclature: 2203
- 电化学

类型

化学工艺

中断

革命

使用方法

广泛使用

前体

  • 锂金属的发现及其高电化学潜力
  • 20世纪70年代插层化合物的基础研究
  • 稳定非水电解质的开发
  • 早期不安全的可充电锂金属电池原型

应用

  • 智能手机、笔记本电脑和平板电脑
  • 电动汽车(EV)
  • 无绳电动工具和园艺设备
  • 电网规模储能系统
  • 植入式医疗设备和助听器

专利:

  • US4357215A

潜在的创新想法

级别需要会员

您必须是!!等级!!会员才能访问此内容。

立即加入

已经是会员? 在此登录
Related to: lithium-ion, intercalation, anode, cathode, electrolyte, rechargeable, energy density, graphite.

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

迎接新挑战
机械工程师、项目、工艺工程师或研发经理
有效的产品开发

可在短时间内接受新的挑战。
通过 LinkedIn 联系我
塑料金属电子集成、成本设计、GMP、人体工程学、中高容量设备和耗材、精益制造、受监管行业、CE 和 FDA、CAD、Solidworks、精益西格玛黑带、医疗 ISO 13485

我们正在寻找新的赞助商

 

您的公司或机构从事技术、科学或研究吗?
> 给我们发送消息 <

接收所有新文章
免费,无垃圾邮件,电子邮件不分发也不转售

或者您可以免费获得完整会员资格以访问所有受限制的内容>这里<

历史背景

(如果日期不详或不相关,例如 "流体力学",则对其显著出现的时间作了四舍五入的估计)。

相关发明、创新和技术原理

滚动至顶部

你可能还喜欢