同构是两个拓扑空间之间的连续函数,它有一个连续的反函数。如果存在这样的函数,两个拓扑空间就被称为同构。从拓扑学的角度来看,同构空间是相同的。这一概念体现了这样一种思想,即一个物体可以被拉伸、弯曲或变形为另一个物体,而不会撕裂或粘连,就像一个咖啡杯可以变成一个甜甜圈。

(generate image for illustration only)
同构是两个拓扑空间之间的连续函数,它有一个连续的反函数。如果存在这样的函数,两个拓扑空间就被称为同构。从拓扑学的角度来看,同构空间是相同的。这一概念体现了这样一种思想,即一个物体可以被拉伸、弯曲或变形为另一个物体,而不会撕裂或粘连,就像一个咖啡杯可以变成一个甜甜圈。
More formally, a function [latex]f: X \to Y[/latex] between two topological spaces [latex](X, \tau_X)[/latex] and [latex](Y, \tau_Y)[/latex] is a homeomorphism if it is a bijection, it is continuous, and its inverse [latex]f^{-1}: Y \to X[/latex] is also continuous. The condition that the inverse must also be continuous is crucial. For example, the function [latex]f: [0, 2\pi) \to S^1[/latex] defined by [latex]f(t) = (\cos(t), \sin(t))[/latex] is a continuous bijection from a half-open interval to a circle, but its inverse is not continuous at the point (1,0), so it is not a homeomorphism. Homeomorphism is an equivalence relation on the class of all topological spaces. The resulting equivalence classes are called homeomorphism classes. The central problem in topology is to determine whether two given topological spaces are homeomorphic. To do this, topologists find topological invariants—properties of spaces that are preserved under homeomorphisms. If two spaces do not share an invariant, they cannot be homeomorphic. Examples of topological invariants include connectedness, compactness, and the fundamental group.
迎接新挑战
机械工程师、项目、工艺工程师或研发经理
可在短时间内接受新的挑战。
通过 LinkedIn 联系我
塑料金属电子集成、成本设计、GMP、人体工程学、中高容量设备和耗材、精益制造、受监管行业、CE 和 FDA、CAD、Solidworks、精益西格玛黑带、医疗 ISO 13485
同构
(如果日期不详或不相关,例如 "流体力学",则对其显著出现的时间作了四舍五入的估计)。
相关发明、创新和技术原理
{{标题}}
{%,如果摘录 %}{{ 摘录 | truncatewords:55 }}
{% endif %}