» 热电品质因数(ZT)

热电品质因数(ZT)

1950
  • Abram Ioffe
Researcher measuring thermoelectric materials in a solid state physics laboratory.

The thermoelectric figure of merit “ZT”, is a dimensionless quantity that measures the efficiency of a material for thermoelectric applications. It is defined as [latex]ZT = \frac{S^2 \sigma T}{\kappa}[/latex], where S is the Seebeck coefficient, [latex]\sigma[/latex] is electrical conductivity, T is absolute temperature, and [latex]\kappa[/latex] is thermal conductivity. A higher ZT value indicates a more efficient thermoelectric material.

The figure of merit encapsulates the essential properties a material must possess to be effective in thermoelectric energy conversion. The numerator, [乳胶]S^2 \sigma[/latex], is known as the power factor. A high Seebeck coefficient (S) is needed to generate a large voltage from a given temperature difference, and high electrical conductivity ([latex]\sigma[/latex]) is required to minimize resistive (Joule) heating losses. The denominator, thermal conductivity ([latex]\kappa[/latex]), must be as low as possible. A low [latex]\kappa[/latex] helps maintain a large temperature difference across the device, which is essential for both power generation (Seebeck effect) and cooling (Peltier effect).

The primary challenge in thermoelectric material science is that these properties are often interdependent and conflicting. For instance, materials with high electrical conductivity (like metals) also tend to have high thermal conductivity due to the Wiedemann-Franz law. The quest for high ZT materials has 引领 to advanced strategies like nanostructuring. By creating structures with features on the nanoscale, it is possible to scatter phonons (which carry heat) more effectively than electrons (which carry charge), thereby reducing [latex]kappa[/latex] without significantly harming [latex]sigma[/latex]. This ‘phonon-glass electron-crystal’ concept has led to significant improvements in ZT values over the last few decades.

UNESCO Nomenclature: 2211
– Solid state physics

类型

物理特性

中断

递增

使用方法

广泛使用

前体

  • discoveries of the seebeck, peltier, and thomson effects
  • 固体物理学和半导体理论的发展
  • 了解固体中的电和热传输机制
  • 维德曼-弗朗兹电导率和热导率定律

应用

  • 比较不同热电材料性能的基准
  • 指导材料科学研究以开发更高效的热电设备
  • 工程热电发电机(teg)和冷却器(tecs)的设计参数
  • 预测热电装置的最大可能效率

专利:

NA

潜在的创新想法

级别需要会员

您必须是!!等级!!会员才能访问此内容。

立即加入

已经是会员? 在此登录
Related to: figure of merit, ZT, thermoelectric efficiency, seebeck coefficient, electrical conductivity, thermal conductivity, material science, power factor, phonon scattering, nanostructuring.

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

迎接新挑战
机械工程师、项目、工艺工程师或研发经理
有效的产品开发

可在短时间内接受新的挑战。
通过 LinkedIn 联系我
塑料金属电子集成、成本设计、GMP、人体工程学、中高容量设备和耗材、精益制造、受监管行业、CE 和 FDA、CAD、Solidworks、精益西格玛黑带、医疗 ISO 13485

我们正在寻找新的赞助商

 

您的公司或机构从事技术、科学或研究吗?
> 给我们发送消息 <

接收所有新文章
免费,无垃圾邮件,电子邮件不分发也不转售

或者您可以免费获得完整会员资格以访问所有受限制的内容>这里<

历史背景

(如果日期不详或不相关,例如 "流体力学",则对其显著出现的时间作了四舍五入的估计)。

相关发明、创新和技术原理

滚动至顶部

你可能还喜欢