» 可压缩流中的动压力

可压缩流中的动压力

1930
  • Ernst Mach
  • Ludwig Prandtl
  • Theodore von Kármán
Aerospace engineers analyzing dynamic pressure data in a high-tech laboratory setting.

In compressible flows, particularly at high speeds, dynamic 压力 is related to 马赫数 ([latex]M[/latex]) and static pressure ([latex]p[/latex]). For an ideal gas, the relationship is given by [latex]q = \frac{1}{2} \gamma p M^2[/latex], where [latex]\gamma[/latex] is the ratio of specific heats. This formulation is crucial for supersonic and hypersonic aerodynamics, where fluid density changes significantly.

When a fluid’s speed approaches a significant fraction of the speed of sound, the assumption of constant density (incompressibility) breaks down. Changes in pressure cause significant changes in density, and 热力学 effects become important. This is the realm of compressible flow. The simple formula [latex]q = \frac{1}{2} \rho u^2[/latex] is still used as a formal definition, but its relationship to pressure changes is more complex. The formula [latex]q = \frac{1}{2} \gamma p M^2[/latex] provides a direct link between dynamic pressure and the key parameters of compressible flow: static pressure ([latex]p[/latex]), the ratio of specific heats ([latex]\gamma[/latex], which is a property of the gas, approximately 1.4 for air), and the Mach number ([latex]M = u/a[/latex], where [latex]a[/latex] is the local speed of sound).

This equation is derived from the definition of Mach number and the ideal gas equation of state. It is fundamental in high-speed aerodynamics. For instance, the pressure measured at a stagnation point ([latex]p_0[/latex]) in supersonic flow is not given by the simple Bernoulli equation. Instead, it is related to the static pressure by the isentropic flow relations or, if a shock wave is present, by the Rankine-Hugoniot relations. In these calculations, the term [latex]\frac{1}{2} \gamma p M^2[/latex] frequently appears, representing the kinetic energy component of the flow in a thermodynamically consistent way. This is crucial for accurately predicting the extreme pressures and temperatures experienced by supersonic aircraft, re-entry capsules, and meteorites entering the atmosphere. The concept is also sometimes referred to as “impact pressure” in this context, emphasizing the pressure rise due to the fluid’s momentum being brought to rest.

UNESCO Nomenclature: 3301
– Aeronautical engineering and technology

类型

抽象系统

中断

实质性

使用方法

广泛使用

前体

应用

  • 超音速和高超音速飞机的设计
  • 再入飞行器热防护系统设计
  • 火箭喷管设计与性能分析
  • 超燃冲压发动机和冲压发动机的开发
  • 高速风洞测试
  • 恒星风和天体物理喷流的建模

专利:

NA

潜在的创新想法

级别需要会员

您必须是!!等级!!会员才能访问此内容。

立即加入

已经是会员? 在此登录
Related to: compressible flow, supersonic, hypersonic, mach number, dynamic pressure, gas dynamics, specific heat ratio, shock wave, aerodynamics, impact pressure.

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

迎接新挑战
机械工程师、项目、工艺工程师或研发经理
有效的产品开发

可在短时间内接受新的挑战。
通过 LinkedIn 联系我
塑料金属电子集成、成本设计、GMP、人体工程学、中高容量设备和耗材、精益制造、受监管行业、CE 和 FDA、CAD、Solidworks、精益西格玛黑带、医疗 ISO 13485

我们正在寻找新的赞助商

 

您的公司或机构从事技术、科学或研究吗?
> 给我们发送消息 <

接收所有新文章
免费,无垃圾邮件,电子邮件不分发也不转售

或者您可以免费获得完整会员资格以访问所有受限制的内容>这里<

历史背景

(如果日期不详或不相关,例如 "流体力学",则对其显著出现的时间作了四舍五入的估计)。

相关发明、创新和技术原理

滚动至顶部

你可能还喜欢