» Decimal Reduction Time (D-value)

Decimal Reduction Time (D-value)

1920
Thermal sterilization setup with microbial cultures and temperature monitoring in applied microbiology.

The D-value is the time required at a specific temperature to kill 90% (or one log reduction) of a target microorganism population. It is a critical parameter in thermal sterilization, quantifying a microbe’s resistance to heat. For example, if a population of [latex]10^6[/latex] spores has a D-value of 2 minutes, it takes 2 minutes to reduce it to [latex]10^5[/latex].

The D-value, or decimal reduction time, is a cornerstone of thermal processing science, providing a precise measure of an organism’s heat resistance. It is specific to a particular microorganism under a defined set of conditions (temperature, pH, water activity, etc.). The value is derived from a microbial survivor curve, which is a plot of the logarithm of the number of surviving organisms versus the exposure time at a constant temperature. For a first-order reaction, this plot yields a straight line, and the D-value is the negative reciprocal of the slope. Mathematically, it represents the time required for a 90% reduction in the microbial population. For example, a D-value of 1.5 minutes at 121°C ([latex]D_{121}[/latex]) for Clostridium botulinum spores means that for every 1.5 minutes of exposure at that temperature, the population of these spores will decrease by a factor of ten. To achieve a 12-log reduction (a standard for low-acid canned foods, known as the ’12D concept’), the required processing time would be [latex]12 \times D[/latex], or [latex]12 \times 1.5 = 18[/latex] minutes. This ensures an extremely high probability that no viable C. botulinum spores remain. The D-value is critical for designing sterilization processes that are effective enough to ensure safety but not so harsh that they degrade the quality of the product, whether it’s food, a pharmaceutical, or a medical device. Different microorganisms have vastly different D-values; vegetative bacteria are typically much less resistant (lower D-value) than bacterial endospores.

The concept of quantifying thermal resistance emerged from pioneering work in the early 20th century, particularly within the canning industry. Scientists like W.D. Bigelow and C. Olin Ball sought to move beyond simple trial-and-error methods for food preservation. They conducted systematic studies to determine the time and temperature combinations needed to destroy spoilage and pathogenic organisms, most notably Clostridium botulinum. This research 引领 to the development of the ‘thermal death time’ (TDT) curve and the formalization of the D-value and the related Z-value (which describes the temperature dependence of the D-value). This quantitative approach transformed food processing from an art into a science, enabling the safe, large-scale production of canned foods and forming the basis for modern sterilization 验证 across multiple industries. It provided a universal language to describe microbial resistance and process lethality.

UNESCO Nomenclature: 2401
– Microbiology

类型

Quantitative Metric

Disruption

Substantial

使用方法

Widespread Use

Precursors

  • arrhenius equation describing temperature dependence of reaction rates
  • first-order reaction kinetics
  • studies by bigelow and esty on thermal death of bacteria

应用

  • designing and validating pasteurization and sterilization cycles in the food industry
  • calculating sterilization times for medical devices
  • environmental microbiology studies
  • pharmaceutical manufacturing 过程控制

专利:

Potential Innovations Ideas

级别需要会员

您必须是!!等级!!会员才能访问此内容。

立即加入

已经是会员? 在此登录
Related to: d-value, decimal reduction time, thermal sterilization, microbiology, log reduction, heat resistance, food processing, clostridium botulinum, kinetics, validation.

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

迎接新挑战
Mechanical Engineer, Project, Process Engineering or R&D Manager
有效的产品开发

可在短时间内接受新的挑战。
通过 LinkedIn 联系我
Plastic metal electronics integration, Design-to-cost, GMP, Ergonomics, Medium to high-volume devices & consumables, Lean Manufacturing, Regulated industries, CE & FDA, CAD, Solidworks, Lean Sigma Black Belt, medical ISO 13485

我们正在寻找新的赞助商

 

您的公司或机构从事技术、科学或研究吗?
> 给我们发送消息 <

接收所有新文章
免费,无垃圾邮件,电子邮件不分发也不转售

或者您可以免费获得完整会员资格以访问所有受限制的内容>这里<

Historical Context

(if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)

Related Invention, Innovation & Technical Principles

滚动至顶部

你可能还喜欢