» Buffon’s Needle Problem

Buffon’s Needle Problem

1777
  • Georges-Louis Leclerc, Comte de Buffon
Geometric probability experiment with needle and parallel lines on a wooden floor.

One of the earliest problems in geometric probability, it is considered a precursor to the Monte Carlo method. It involves dropping a needle of length [latex]l[/latex] onto a floor with parallel lines a distance [latex]t[/latex] apart. The probability that the needle will cross a line is [latex]P = \frac{2l}{\pi t}[/latex] (for [latex]l \le t[/latex]). This provides a physical experiment to estimate [latex]\pi[/latex].

In 1733, Georges-Louis Leclerc, Comte de Buffon, posed the question: what is the probability that a needle, when dropped randomly on a ruled surface, will intersect one of the lines? The solution, published in 1777, is a classic result in geometric probability. To solve it, let the needle have length [latex]l[/latex] and the parallel lines be separated by a distance [latex]t \ge l[/latex]. The position of the needle can be described by two variables: the distance [latex]x[/latex] from the center of the needle to the nearest line, and the angle [latex]\theta[/latex] the needle makes with the lines. The variable [latex]x[/latex] is uniformly distributed in [latex][0, t/2][/latex], and [latex]\theta[/latex] is uniformly distributed in [latex][0, \pi/2][/latex].

The needle crosses a line if [latex]x \le \frac{l}{2}\sin\theta[/latex]. The problem is to find the area of this region in the [latex](x, \theta)[/latex] parameter space and divide it by the total area of the parameter space, which is [latex]\frac{t}{2} \times \frac{\pi}{2} = \frac{\pi t}{4}[/latex]. The area of the “favorable” region (where a crossing occurs) is given by the integral [latex]\int_0^{\pi/2} \frac{l}{2}\sin\theta \,d\theta = \frac{l}{2}[-\cos\theta]_0^{\pi/2} = \frac{l}{2}[/latex]. The probability is the ratio of these areas: [latex]P = \frac{l/2}{\pi t/4} = \frac{2l}{\pi t}[/latex]. By performing the experiment many times and observing the frequency of crossings, one can rearrange the formula to estimate [latex]\pi[/latex]: [latex]\pi \approx \frac{2l}{tP}[/latex]. This physical simulation to solve a mathematical problem is a direct intellectual ancestor of modern Monte Carlo methods.

UNESCO Nomenclature: 1209
- 统计资料

类型

抽象系统

中断

基础

使用方法

广泛使用

前体

  • development of probability theory (Bernoulli, De Moivre)
  • invention of integral calculus (Newton, Leibniz)
  • 早期关于几何图形及其属性的研究(欧几里得)

应用

  • 几何概率的早期例子
  • 积分和概率的教学工具
  • 随机模拟方法的历史基础

专利:

NA

潜在的创新想法

级别需要会员

您必须是!!等级!!会员才能访问此内容。

立即加入

已经是会员? 在此登录
Related to: Buffon’s needle, geometric probability, Pi, Monte Carlo, stochastic geometry, integral calculus, simulation, probability theory, needle problem, estimation.

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

迎接新挑战
机械工程师、项目、工艺工程师或研发经理
有效的产品开发

可在短时间内接受新的挑战。
通过 LinkedIn 联系我
塑料金属电子集成、成本设计、GMP、人体工程学、中高容量设备和耗材、精益制造、受监管行业、CE 和 FDA、CAD、Solidworks、精益西格玛黑带、医疗 ISO 13485

我们正在寻找新的赞助商

 

您的公司或机构从事技术、科学或研究吗?
> 给我们发送消息 <

接收所有新文章
免费,无垃圾邮件,电子邮件不分发也不转售

或者您可以免费获得完整会员资格以访问所有受限制的内容>这里<

历史背景

(如果日期不详或不相关,例如 "流体力学",则对其显著出现的时间作了四舍五入的估计)。

相关发明、创新和技术原理

滚动至顶部

你可能还喜欢