玻尔兹曼分布描述了在温度 T 时处于热平衡状态的系统处于能量 E 的特定微观状态的概率,该概率与玻尔兹曼因子 [latex]e^{-E / k_B T}[/latex] 成正比。这意味着能量较低的状态比能量较高的状态更有可能以指数形式被占据,而温度会调节这种偏好。

玻尔兹曼分布描述了在温度 T 时处于热平衡状态的系统处于能量 E 的特定微观状态的概率,该概率与玻尔兹曼因子 [latex]e^{-E / k_B T}[/latex] 成正比。这意味着能量较低的状态比能量较高的状态更有可能以指数形式被占据,而温度会调节这种偏好。
The Boltzmann distribution is a cornerstone of statistical mechanics and is arguably its most useful result for practical applications. It can be derived by considering a small system in thermal contact with a large heat reservoir. The combined system (system + reservoir) is isolated, and by applying Boltzmann’s entropy principle ([latex]S = k_B \ln W[/latex]) to the reservoir, one can find the most probable energy distribution for the small system. The result is that the probability of the system being in state ‘i’ with energy [latex]E_i[/latex] is [latex]P_i \propto e^{-E_i/k_B T}[/latex].
The term [latex]k_B T[/latex] represents the characteristic thermal energy available at temperature T. The ratio [latex]E/k_B T[/latex] is dimensionless and determines the probability. If a state’s energy E is much less than the thermal energy ([latex]E \ll k_B T[/latex]), the exponential factor is close to 1, and the state is highly probable. If the energy is much greater than the thermal energy ([latex]E \gg k_B T[/latex]), the factor is very small, and the state is very unlikely to be occupied. This exponential dependence is responsible for many phenomena, such as the rapid increase in chemical reaction rates with temperature, as more molecules possess the necessary activation energy.
迎接新挑战
机械工程师、项目、工艺工程师或研发经理
可在短时间内接受新的挑战。
通过 LinkedIn 联系我
塑料金属电子集成、成本设计、GMP、人体工程学、中高容量设备和耗材、精益制造、受监管行业、CE 和 FDA、CAD、Solidworks、精益西格玛黑带、医疗 ISO 13485
玻尔兹曼分布
(如果日期不详或不相关,例如 "流体力学",则对其显著出现的时间作了四舍五入的估计)。
相关发明、创新和技术原理
{{标题}}
{%,如果摘录 %}{{ 摘录 | truncatewords:55 }}
{% endif %}