A second-order linear elliptic partial differential equation that describes systems in a steady-state or equilibrium condition. It is written as [latex]nabla^2 u = 0[/latex] or [latex]Delta u = 0[/latex], where [latex]nabla^2[/latex] (or [latex]Delta[/latex]) is the Laplace operator. Solutions, called harmonic functions, are the smoothest possible functions and represent potentials in fields like electrostatics, gravitation, and fluid flow.
Laplace’s Equation
- Pierre-Simon Laplace
Laplace’s equation is the canonical elliptic PDE. It arises in numerous physical contexts where a quantity is in equilibrium and its value at a point is the average of its values in the surrounding neighborhood. This averaging property is a defining characteristic of its solutions, known as harmonic functions. A direct consequence is the ‘maximum principle’ for harmonic functions, which states that a non-constant solution cannot attain its maximum or minimum value in the interior of its domain; these extrema must lie on the boundary. This prevents, for example, a hot spot from existing in a region of steady-state heat flow unless there is a source there (which would violate [latex]nabla^2 u = 0[/latex]).
Solutions to Laplace’s equation are infinitely differentiable (analytic) even if the boundary conditions are not. This is a remarkable smoothing property, even stronger than that of the heat equation. The problem of finding a solution to Laplace’s equation in a domain given the values of the solution on the boundary is known as the Dirichlet problem. The related Neumann problem specifies the normal derivative on the boundary.
Unlike the time-dependent heat and wave equations, Laplace’s equation is typically solved for boundary value problems, where the entire boundary of a spatial domain influences the solution at every interior point simultaneously. This ‘global’ dependence contrasts with the causal, time-marching nature of parabolic and hyperbolic equations.
Tipo
Disruption
Utilizzo
Precursors
- newton’s law of universal gravitation
- coulomb’s law of electrostatics
- concept of a potential field by lagrange
- development of multivariable calculus and the laplace operator
Applicazioni
- electrostatics for calculating electric potential in charge-free regions
- gravitation for determining gravitational potential
- steady-state heat conduction
- incompressible and irrotational fluid flow
- describing the shape of a soap film stretched across a wire frame
Brevetti:
Potential Innovations Ideas
Livelli! Iscrizione richiesta
Per accedere a questo contenuto devi essere un membro di !Professionals (100% free)!
DISPONIBILE PER NUOVE SFIDE
Ingegnere meccanico, responsabile di progetto o di ricerca e sviluppo
Disponibile per una nuova sfida con breve preavviso.
Contattami su LinkedIn
Integrazione di componenti elettronici in plastica e metallo, progettazione in base ai costi, GMP, ergonomia, dispositivi e materiali di consumo di medio-alto volume, settori regolamentati, CE e FDA, CAD, Solidworks, Lean Sigma Black Belt, ISO 13485 in ambito medico
Stiamo cercando un nuovo sponsor
La tua azienda o istituzione si occupa di tecnica, scienza o ricerca?
> inviaci un messaggio <
Ricevi tutti i nuovi articoli
Gratuito, no spam, email non distribuita né rivenduta
oppure puoi ottenere la tua iscrizione completa -gratuitamente- per accedere a tutti i contenuti riservati >Qui<
Related Invention, Innovation & Technical Principles