A logiciel testing technique where a small number of test cases are selected from a larger ‘domain’ or range of possible inputs.
- Méthodologies : Ingénierie, Conception de Produits, Gestion de projet
Domain Testing

Domain Testing
- Méthodologie Agile, Amélioration continue, Amélioration des processus, Optimisation des processus, Assurance qualité, Contrôle de qualité, Gestion de la qualité, Software Testing, Méthodes d'essai
Objectif :
Comment il est utilisé :
- Testers divide the possible inputs into 'equivalence classes'—groups of data that should all be processed in the same way. By testing one value from each class, you can infer how the system will handle all values in that class.
Avantages
- Dramatically reduces the number of test cases required while maintaining good coverage; it is a systematic and efficient approach to selecting test data.
Inconvénients
- Requires domain knowledge to correctly identify the equivalence classes; may not catch bugs that occur with specific, non-boundary values within a class.
Catégories :
- Ingénierie, Qualité
Idéal pour :
- Efficiently testing a system by dividing inputs into equivalence classes and testing one representative from each class.
Domain Testing offers robust advantages across various stages of product design and development, particularly in industries where systems handle extensive input data, such as software engineering, financial services, telecommunications, and e-commerce. During the testing phase, product teams can implement this methodology post-requirements gathering, allowing for a more organized approach to quality assurance. The method is most beneficial when engage testers who possess both domain knowledge and a robust understanding of the application’s intended functionality. By forming equivalence classes based on input values—such as valid, invalid, boundary conditions, and special cases—teams can significantly truncate the number of test scenarios while ensuring diverse coverage. For example, in a web application that takes user input for date of birth, equivalence classes could categorize acceptable dates, invalid formats, and out-of-range values, allowing testers to sample one from each group. This systematic selection not only saves time and resources but also increases the likelihood of uncovering defects that could affect user experience. Various testing tools and automation can be leveraged to facilitate the execution of these tests, while collaboration between developers, product managers, and quality assurance teams at this stage enhances the methodology’s effectiveness, as input from different stakeholders enriches equivalence class definitions, contributing to a more comprehensive testing strategy.
Principales étapes de cette méthodologie
- Identify the input domain for the system under test.
- Determine the potential inputs and their types.
- Divide inputs into equivalence classes based on expected behavior.
- Identify boundaries for each equivalence class.
- Select representative test cases from each equivalence class.
- Execute tests using the selected representative cases.
- Analyze the results to ensure correct behavior across classes.
Conseils de pro
- Refine equivalence classes by analyzing edge cases; focus on boundary values since they often reveal unhandled conditions.
- Utilize domain knowledge to create more sophisticated classes that reflect real-world scenarios, enhancing the relevance of your tests.
- Document the rationale behind class selections; clarity in reasoning aids in future test iterations and improves team collaboration.
Lire et comparer plusieurs méthodologies, nous recommandons le
> Référentiel méthodologique étendu <
ainsi que plus de 400 autres méthodologies.
Vos commentaires sur cette méthodologie ou des informations supplémentaires sont les bienvenus sur le site web de la Commission européenne. section des commentaires ci-dessous ↓ , ainsi que toute idée ou lien en rapport avec l'ingénierie.
Articles Similaires
Questionnaires sur les troubles musculo-squelettiques
Tests à plusieurs variables (MVT)
Analyse de régression multiple
Systèmes de capture de mouvement
Méthode MoSCoW
Test de la médiane de Mood