Maison » Gauss’s Theorema Egregium

Gauss’s Theorema Egregium

1827
  • Carl Friedrich Gauss

Theorema Egregium (Latin for “Remarkable Theorem”) states that the Gaussian curvature of a surface is an intrinsic property. This means it depends only on how distances are measured on the surface itself, not on how the surface is embedded in three-dimensional space. A flat sheet of paper can be rolled into a cylinder but not a sphere without stretching.

Gauss’s Theorema Egregium is a cornerstone of differential geometry. Before Gauss, curvature was typically understood extrinsically, relating to how a surface bends within the ambient 3D space. Gauss discovered a way to compute the curvature using only information available to an imaginary two-dimensional being living on the surface. This intrinsic measure is now called Gaussian curvature.

He showed that the Gaussian curvature [latex]K[/latex] could be expressed entirely in terms of the coefficients of the first fundamental form ([latex]E, F, G[/latex]) and their derivatives. The first fundamental form, [latex]ds^2 = E du^2 + 2F du dv + G dv^2[/latex], defines the metric of the surface—it tells how to measure lengths of curves. Since the metric is intrinsic, the curvature must be as well. This was a profound shift in perspective.

The theorem’s practical implication is that any two surfaces that can be transformed into one another without stretching or tearing (an isometry) must have the same Gaussian curvature at corresponding points. For example, a plane has zero curvature. Since a cylinder can be made by rolling up a plane without distortion, it also has zero Gaussian curvature. A sphere, however, has constant positive curvature, which is why it’s impossible to flatten an orange peel without breaking it. This concept was later generalized by Riemann to higher dimensions, paving the way for Einstein’s theory of general relativity.

UNESCO Nomenclature: 1204
– Geometry

Type

Abstract System

Disruption

Revolutionary

Utilisation

Widespread Use

Precursors

  • Euclidean geometry
  • Theory of curves and surfaces
  • Development of calculus by Newton and Leibniz
  • First fundamental form

Applications

  • cartography (explains why no flat map of the earth can be perfectly accurate)
  • general relativity (curvature of spacetime is intrinsic)
  • structural engineering (designing shells and curved structures)
  • computer graphics (for texture mapping and surface parameterization)

Brevets :

QUE

Potential Innovations Ideas

!niveaux !!! Adhésion obligatoire

Vous devez être membre de l'association pour accéder à ce contenu.

S’inscrire maintenant

Vous êtes déjà membre ? Connectez-vous ici
Related to: gaussian curvature, intrinsic geometry, theorema egregium, first fundamental form, isometry, surfaces, metric, Gauss

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

DISPONIBLE POUR DE NOUVEAUX DÉFIS
Ingénieur mécanique, chef de projet ou de R&D
Développement de produits efficace

Disponible pour un nouveau défi dans un court délai.
Contactez-moi sur LinkedIn
Intégration électronique métal-plastique, Conception à coût réduit, BPF, Ergonomie, Appareils et consommables de volume moyen à élevé, Secteurs réglementés, CE et FDA, CAO, Solidworks, Lean Sigma Black Belt, ISO 13485 médical

Nous recherchons un nouveau sponsor

 

Votre entreprise ou institution est dans le domaine de la technique, de la science ou de la recherche ?
> envoyez-nous un message <

Recevez tous les nouveaux articles
Gratuit, pas de spam, email non distribué ni revendu

ou vous pouvez obtenir votre adhésion complète - gratuitement - pour accéder à tout le contenu restreint >ici<

Historical Context

(if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)

Related Invention, Innovation & Technical Principles

Retour en haut

Vous aimerez peut-être aussi