Maison » Précession du périhélie de Mercure

Précession du périhélie de Mercure

1915
  • Urbain Le Verrier
  • Albert Einstein
Observatoire astronomique avec télescope, illustrant la précession du périhélie en relativité.

General relativity provided the first accurate explanation for the anomalous precession of Mercury’s perihelion. Newtonian gravity could not fully account for the slow, gradual shift in the orientation of Mercury’s elliptical orbit. Einstein’s theory correctly predicted the missing 43 arcseconds per century, attributing it to the curvature of spacetime around the Sun, a major early triumph for the theory.

In the 19th century, astronomers observed that Mercury’s elliptical orbit was not stationary. Its point of closest approach to the Sun, the perihelion, was slowly advancing, or precessing. While most of this precession was explained by the gravitational tugs of other planets according to Newton’s laws, a small discrepancy of about 43 arcseconds per century remained unaccounted for. This anomaly puzzled scientists, with some proposing the existence of an undiscovered planet, Vulcan, between Mercury and the Sun.

In 1915, Albert Einstein applied his new theory of general relativity to the problem. His calculations showed that the curvature of spacetime caused by the Sun’s mass would introduce a correction to the Newtonian description of gravity. This correction perfectly accounted for the missing 43 arcseconds per century without any ad-hoc parameters. Unlike Newton’s theory, where orbits are closed ellipses (in a two-body system), general relativity predicts that orbits are not closed but trace a rosette pattern. This effect is most pronounced for objects in strong gravitational fields and with eccentric orbits, making Mercury the ideal candidate in our solar system. The successful explanation of Mercury’s perihelion precession was one of the first strong pieces of evidence that general relativity was a more accurate description of gravity than Newton’s theory.

UNESCO Nomenclature: 2211
– Relativity

Taper

Système abstrait

Perturbation

Substantiel

Usage

Utilisation généralisée

Précurseurs

  • Les lois de Kepler sur le mouvement des planètes
  • Newton’s law of gravitation universelle
  • Urbain Le Verrier’s detailed calculations of planetary orbits
  • Relativité restreinte

Applications

  • première preuve observationnelle majeure à l'appui de la relativité générale
  • un test de précision pour la relativité générale et d'autres théories de la gravité
  • utilisé pour contraindre les théories alternatives de la gravité
  • calculs de mécanique céleste de haute précision

Brevets:

NA

Idées d'innovations potentielles

!niveaux !!! Adhésion obligatoire

Vous devez être membre de l'association pour accéder à ce contenu.

S’inscrire maintenant

Vous êtes déjà membre ? Connectez-vous ici
Related to: perihelion precession, mercury, general relativity, newtonian gravity, spacetime curvature, orbital mechanics, celestial mechanics, gravity.

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

DISPONIBLE POUR DE NOUVEAUX DÉFIS
Ingénieur mécanique, chef de projet, ingénierie des procédés ou R&D
Développement de produits efficace

Disponible pour un nouveau défi dans un court délai.
Contactez-moi sur LinkedIn
Intégration électronique métal-plastique, Conception à coût réduit, BPF, Ergonomie, Appareils et consommables de volume moyen à élevé, Production allégée, Secteurs réglementés, CE et FDA, CAO, Solidworks, Lean Sigma Black Belt, ISO 13485 médical

Nous recherchons un nouveau sponsor

 

Votre entreprise ou institution est dans le domaine de la technique, de la science ou de la recherche ?
> envoyez-nous un message <

Recevez tous les nouveaux articles
Gratuit, pas de spam, email non distribué ni revendu

ou vous pouvez obtenir votre adhésion complète - gratuitement - pour accéder à tout le contenu restreint >ici<

Contexte historique

(si la date est inconnue ou non pertinente, par exemple « mécanique des fluides », une estimation arrondie de son émergence notable est fournie)

Inventions, innovations et principes techniques connexes

Retour en haut

Vous aimerez peut-être aussi