A Newtonian fluid’s shear stress is directly proportional to the rate of shear strain. This linear relationship is defined by Newton’s law of viscosity: [latex]\tau = \mu \frac{du}{dy}[/latex], where [latex]\tau[/latex] is the shear stress, [latex]\mu[/latex] is the dynamic viscosity (a constant of proportionality), and [latex]\frac{du}{dy}[/latex] is the shear rate or velocity gradient.
Newton’s Law of Viscosity
- Isaac Newton
Newton’s law of viscosity establishes the fundamental constitutive equation for a Newtonian fluid. It postulates that for a simple shear flow, the force per unit area (shear stress, [latex]\tau[/latex]) required to move one layer of fluid relative to another is proportional to the rate at which the velocity changes with distance perpendicular to the flow (the velocity gradient or shear rate, [latex]\frac{du}{dy}[/latex]). The constant of proportionality, [latex]\mu[/latex], is known as the dynamic viscosity, a material property that measures the fluid’s resistance to flow. For a Newtonian fluid, this viscosity is constant and depends only on temperature and pressure, not on the forces acting upon it.
This linear model is an idealization but accurately describes many common fluids like water, air, and simple oils under typical conditions. The concept is foundational to fluid dynamics, allowing for the derivation of the Navier-Stokes equations, which govern the motion of viscous fluid substances. The law implies that a Newtonian fluid will begin to flow immediately upon the application of any shear stress, no matter how small. This contrasts with non-Newtonian fluids, which may exhibit shear-thinning, shear-thickening, or require a minimum yield stress before flowing.
Historically, Isaac Newton proposed this relationship in his 1687 *Philosophiæ Naturalis Principia Mathematica*. He did not express it in the modern differential form but described the concept of a “defect of lubricity” or internal friction in fluids. The modern mathematical formulation was developed later by mathematicians and physicists like Cauchy and Stokes, who incorporated it into a more general cadre for continuum mécanique.
Type
Disruption
Utilisation
Precursors
- Evangelista Torricelli’s work on fluid efflux (Torricelli’s Law)
- Blaise Pascal’s principles of hydrostatics (Pascal’s Law)
- Isaac Newton’s laws of motion
- Development of calculus by Newton and Leibniz
Applications
- design of pipelines for water and oil transport
- aerodynamic analysis of wings and vehicle bodies
- lubrication theory for bearings and gears
- modeling of weather patterns and ocean currents
- processus chimique engineering for mixing and reaction vessels
Brevets :
Potential Innovations Ideas
!niveaux !!! Adhésion obligatoire
Vous devez être membre de l'association pour accéder à ce contenu.
DISPONIBLE POUR DE NOUVEAUX DÉFIS
Ingénieur mécanique, chef de projet ou de R&D
Disponible pour un nouveau défi dans un court délai.
Contactez-moi sur LinkedIn
Intégration électronique métal-plastique, Conception à coût réduit, BPF, Ergonomie, Appareils et consommables de volume moyen à élevé, Secteurs réglementés, CE et FDA, CAO, Solidworks, Lean Sigma Black Belt, ISO 13485 médical
Nous recherchons un nouveau sponsor
Votre entreprise ou institution est dans le domaine de la technique, de la science ou de la recherche ?
> envoyez-nous un message <
Recevez tous les nouveaux articles
Gratuit, pas de spam, email non distribué ni revendu
ou vous pouvez obtenir votre adhésion complète - gratuitement - pour accéder à tout le contenu restreint >ici<
Related Invention, Innovation & Technical Principles