Maison » Les cinq solides de Platon

Les cinq solides de Platon

-350
  • Theaetetus
  • Plato (for philosophical association)
Cinq solides de Platon : tétraèdre, cube, octaèdre, dodécaèdre, icosaèdre en géométrie.

(generate image for illustration only)

Les solides de Platon sont les cinq seuls polyèdres réguliers convexes : un polyèdre régulier a des faces polygonales régulières congruentes et le même nombre de faces se rencontrant à chaque sommet. Les cinq solides sont le tétraèdre (4 faces), le cube (6 faces), l'octaèdre (8 faces), le dodécaèdre (12 faces) et l'icosaèdre (20 faces). Leur symétrie et leurs propriétés ont été étudiées depuis l'Antiquité.

The Platonic solids represent a unique and finite set of three-dimensional shapes defined by their high degree of symmetry. To be a Platonic solid, a polyhedron must be convex and regular. This means all its faces must be identical (congruent) regular polygons, and the same number of faces must meet at every vertex. The proof that only five such solids can exist is a classic result in geometry. It relies on the fact that the sum of the angles of the faces meeting at any vertex must be less than 360 degrees; otherwise, the shape would flatten out. By systematically checking all regular polygons (triangles, squares, pentagons, etc.) and how many can meet at a vertex, one finds only five possibilities.

The five solids are:1. **Tetrahedron**: 4 triangular faces, 3 meeting at each vertex.2. **Cube (Hexahedron)**: 6 square faces, 3 meeting at each vertex.3. **Octahedron**: 8 triangular faces, 4 meeting at each vertex.4. **Dodecahedron**: 12 pentagonal faces, 3 meeting at each vertex.5. **Icosahedron**: 20 triangular faces, 5 meeting at each vertex.No regular polygon with six or more sides can be used, as the angle at each vertex is 120 degrees or more, and three such faces meeting at a point would sum to 360 degrees or more.

These shapes were known to the ancient Greeks, with the mathematician Theaetetus providing a mathematical description and proof of their existence. They are named “Platonic” because the philosopher Plato associated them with the classical elements in his dialogue *Timaeus*: the tetrahedron with fire, the cube with earth, the octahedron with air, the icosahedron with water, and the dodecahedron with the cosmos or aether. This philosophical connection elevated their status beyond mere geometric curiosities. Later, Johannes Kepler attempted to model the orbits of the planets using nested Platonic solids, a testament to their perceived fundamental importance in the structure of the universe.

UNESCO Nomenclature: 1204
- Géométrie

Taper

Système abstrait

Perturbation

Fondamentaux

Usage

Utilisation généralisée

Précurseurs

  • Pythagorean understanding of regular polygons
  • Development of Euclidean geometry and proofs
  • Theaetetus’s mathematical classification of regular solids

Applications

  • crystallography to describe crystal shapes
  • role-playing games (dice)
  • molecular chemistry (e.g., dodecahedrane, icosahedral viruses)
  • art and architecture (e.g., works by M.C. Escher)
  • computer graphics modeling

Brevets:

NA

Idées d'innovations potentielles

!niveaux !!! Adhésion obligatoire

Vous devez être membre de l'association pour accéder à ce contenu.

S’inscrire maintenant

Vous êtes déjà membre ? Connectez-vous ici
Related to: platonic solids, regular polyhedron, convex, symmetry, tetrahedron, cube, octahedron, dodecahedron.

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

DISPONIBLE POUR DE NOUVEAUX DÉFIS
Ingénieur mécanique, chef de projet, ingénierie des procédés ou R&D
Développement de produits efficace

Disponible pour un nouveau défi dans un court délai.
Contactez-moi sur LinkedIn
Intégration électronique métal-plastique, Conception à coût réduit, BPF, Ergonomie, Appareils et consommables de volume moyen à élevé, Production allégée, Secteurs réglementés, CE et FDA, CAO, Solidworks, Lean Sigma Black Belt, ISO 13485 médical

Nous recherchons un nouveau sponsor

 

Votre entreprise ou institution est dans le domaine de la technique, de la science ou de la recherche ?
> envoyez-nous un message <

Recevez tous les nouveaux articles
Gratuit, pas de spam, email non distribué ni revendu

ou vous pouvez obtenir votre adhésion complète - gratuitement - pour accéder à tout le contenu restreint >ici<

Contexte historique

(si la date est inconnue ou non pertinente, par exemple « mécanique des fluides », une estimation arrondie de son émergence notable est fournie)

Inventions, innovations et principes techniques connexes

Retour en haut

Vous aimerez peut-être aussi