Maison » Conservation of Mass

Conservation of Mass

1757

In continuum mechanics, the principle of mass conservation states that the mass of a closed system must remain constant over time. For a fluid, this is expressed by the continuity equation. In its Eulerian differential form, it is written as [latex]\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0[/latex], where [latex]\rho[/latex] is the density and [latex]\mathbf{u}[/latex] is the velocity field.

The conservation of mass is a fundamental principle in physics, and its mathematical formulation within continuum mécanique is known as the continuity equation. This equation provides a precise statement about how the density of a material changes in space and time. The equation [latex]\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0[/latex] applies at every point within the continuum. The term [latex]\frac{\partial \rho}{\partial t}[/latex] represents the rate of change of density at a fixed point (the local or unsteady term), while the term [latex]\nabla \cdot (\rho \mathbf{u})[/latex] is the divergence of the mass flux ([latex]\rho \mathbf{u}[/latex]), representing the net rate of mass flowing out of an infinitesimal volume around that point.

The equation essentially states that if the density at a point is increasing, it must be because more mass is flowing into the infinitesimal volume than is flowing out, and vice versa. For a special case known as an incompressible flow, the density [latex]\rho[/latex] of a fluid parcel is assumed to be constant as it moves. In this case, the continuity equation simplifies significantly to [latex]\nabla \cdot \mathbf{u} = 0[/latex]. This simplified form is widely used in modeling liquids like water and in low-speed aerodynamics. The continuity equation is one of the core governing equations, alongside the conservation of momentum and energy, used in virtually all analyses in fluid dynamics and solid mechanics.

UNESCO Nomenclature: 2209
– Fluid dynamics

Type

Physical Law

Disruption

Foundational

Utilisation

Widespread Use

Precursors

  • The philosophical principle of conservation of matter
  • Development of vector calculus and the divergence theorem
  • Leonhard Euler’s formulation of fluid motion equations
  • Daniel Bernoulli’s work on fluid dynamics

Applications

  • design of pipelines and HVAC systems to ensure proper flow rates
  • aerospace engineering for calculating air density changes around aircraft
  • hydrology for modeling river flow and groundwater movement
  • meteorology for forecasting weather patterns based on air mass movement

Brevets :

QUE

Potential Innovations Ideas

!niveaux !!! Adhésion obligatoire

Vous devez être membre de l'association pour accéder à ce contenu.

S’inscrire maintenant

Vous êtes déjà membre ? Connectez-vous ici
Related to: continuity equation, conservation of mass, fluid dynamics, density, velocity field, incompressible flow, divergence, mass flux

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

DISPONIBLE POUR DE NOUVEAUX DÉFIS
Ingénieur mécanique, chef de projet ou de R&D
Développement de produits efficace

Disponible pour un nouveau défi dans un court délai.
Contactez-moi sur LinkedIn
Intégration électronique métal-plastique, Conception à coût réduit, BPF, Ergonomie, Appareils et consommables de volume moyen à élevé, Secteurs réglementés, CE et FDA, CAO, Solidworks, Lean Sigma Black Belt, ISO 13485 médical

Nous recherchons un nouveau sponsor

 

Votre entreprise ou institution est dans le domaine de la technique, de la science ou de la recherche ?
> envoyez-nous un message <

Recevez tous les nouveaux articles
Gratuit, pas de spam, email non distribué ni revendu

ou vous pouvez obtenir votre adhésion complète - gratuitement - pour accéder à tout le contenu restreint >ici<

Related Invention, Innovation & Technical Principles

Retour en haut

Vous aimerez peut-être aussi