
Les outils d'IA en ligne transforment rapidement l'ingénierie mécanique en augmentant les capacités humaines en matière de conception et d'analyse, fabricationet la maintenance. Ces systèmes d'IA peuvent traiter de grandes quantités de données, identifier des modèles complexes et générer des solutions nouvelles beaucoup plus rapidement que les méthodes traditionnelles. Par exemple, l'IA peut vous aider à optimiser les conceptions en termes de performance et de fabricabilité, à accélérer les simulations complexes, à prédire les propriétés des matériaux et à automatiser un large éventail de tâches analytiques.
The prompts provided below will for example help on generative design, accelerate simulations (FEA/CFD), help on predictive maintenance where AI analyzes sensor data from machinery to forecast potential failures, enabling proactive servicing and minimizing downtime, help on material selection and much more.
- Cette page est spécifique à un domaine. Si nécessaire, vous pouvez effectuer une recherche complète sur tous les domaines et tous les critères dans notre >. Répertoire d'invites AI <, dédié à conception de produits et innovation.
- Compte tenu des ressources et du temps disponibles sur le serveur, les invites elles-mêmes sont réservées aux membres enregistrés et ne sont pas visibles ci-dessous si vous n'êtes pas connecté. Vous pouvez vous inscrire, 100% gratuit :
Adhésion requise
Vous devez être membre du site pour accéder à ce contenu.
- Assistance à la rédaction de propositions de subventions et de documents scientifiques
- Ingénierie mécanique
Invitation à l'IA à Générateur de justification du budget de la subvention
- Répartition des coûts, Financier, Génie mécanique, Gestion de projet, Gestion de la qualité, Recherche et développement, Pratiques de durabilité, Ingénierie de la valeur (EV)
Cette invite demande à l'IA de générer une justification budgétaire détaillée pour une proposition de subvention en génie mécanique, sur la base d'un tableau CSV répertoriant les postes budgétaires, les coûts et les objectifs. Cela permet d'articuler clairement les besoins de financement pour les évaluateurs.
Sortie :
- Texte
- ne nécessite pas d'Internet en direct
- Champs : {csv_budget_items}
Given the following CSV table of budget items for a mechanical engineering grant proposal: {csv_budget_items}, generate a detailed budget justification. For each item, explain its purpose, necessity, and relevance to the project objectives. Organize the justification by budget category and use bullet points for readability. Ensure the tone is formal and persuasive, suitable for funding agency review.
- Le meilleur pour : Meilleur pour créer des descriptions budgétaires claires et convaincantes à l'appui des demandes de financement
- Traduction et adaptation linguistique
- Ingénierie mécanique
Invitation à l'IA à Adaptation des revendications de brevet en langage clair
- Conception pour la fabrication additive (DfAM), Innovation, Propriété intellectuelle, Génie mécanique, Brevet, Développement de produits, Gestion de la qualité, Recherche et développement, User-Centered Design
Réécriture d'une revendication de brevet formelle en une explication en langage clair, compréhensible par un public ne disposant pas d'une expertise juridique ou technique approfondie dans le domaine breveté. Cela permet de communiquer l'essence d'une invention. Le résultat est un texte.
Sortie :
- Texte
- ne nécessite pas d'Internet en direct
- Champs : {patent_claim_text} {invention_general_description}
Act as a Patent Analyst with skills in technical communication.
Your TASK is to adapt the provided `{patent_claim_text}` into a plain language explanation. The explanation should be understandable to an audience described by `{invention_general_description}` which also provides context about the invention's field.
The goal is to convey the SCOPE and ESSENCE of what the claim protects
without using legal jargon or overly technical details from the claim itself unless explained.
**1. Input Details**:
* `{patent_claim_text}`: The full text of a single patent claim (typically Claim 1
or another independent claim). Patent claims have a very specific structure
preamble
transitional phrase like 'comprising'
and then a series of elements or limitations.
* `{invention_general_description}`: A brief description of what the invention is generally about and its intended audience for this explanation (e.g.
'This invention is a new type of bicycle braking system
explain for a product development team including marketing staff.' OR 'This is a software algorithm for optimizing CNC machining paths
explain for mechanical engineers not specialized in software patents.').
**2. Adaptation Process**:
* **Deconstruct the Claim**:
* Identify the PREAMBLE (what the invention IS
e.g.
'A system for...'
'A method of...').
* Identify the KEY ELEMENTS or steps listed after the transitional phrase (e.g.
'comprising:'
'consisting of:'). Each element defines a necessary part of the invention to be covered by the claim.
* Understand the RELATIONSHIPS between these elements.
* **Simplify Terminology**:
* Replace patent-specific legal jargon (e.g.
'wherein'
'said'
'means for') with plain language.
* Simplify overly technical terms if possible
using the `{invention_general_description}` to gauge appropriate vocabulary
or briefly explain them.
* **Explain the Scope**:
* Clearly articulate what combination of features or steps defines the invention according to that claim. Emphasize that ALL listed key elements must typically be present for something to fall under the claim.
* Use analogies or simple examples if they help clarify the inventive concept
drawing from the `{invention_general_description}`.
* **Focus on 'What it Does' and 'Key Unique Parts'**:
* Instead of just listing parts
explain their function or purpose within the invention
if clear from the claim.
* Highlight what seems to be the core inventive aspect or the main differentiators suggested by the claim's structure.
* **Structure for Clarity**:
* Use short sentences and paragraphs.
* Bullet points can be effective for listing the key components or features in plain language.
**3. Output Format**:
* The output MUST be a plain text explanation.
* It should start by stating what the invention generally is (drawing from the preamble and `{invention_general_description}`).
* Then
it should break down what the specific claim covers.
* It should NOT be a legal opinion
but an educational simplification.
Example (Conceptual Flow):
`This invention is about [general description from input].
Specifically
this patent claim describes a [preamble in simple terms] that includes several key parts working together:
* First
it has a [simplified element A] that does [function of A].
* Second
there's a [simplified element B]
which is connected to [element A or other part] and is responsible for [function of B].
* Finally
[simplified element C] ensures that [outcome or function of C].
To be covered by this particular claim
a system would need to have all these described features and connections.`
**IMPORTANT**: Maintain the technical and conceptual accuracy of the claim's scope. The simplification should not broaden or narrow the claim improperly
but make its existing scope understandable. Avoid offering any legal advice or infringement opinions.
- Idéal pour : Expliquer la portée et l'essence des revendications formelles de brevets dans un langage simple pour les ingénieurs en mécanique ou les acteurs économiques qui ne sont pas versés dans le droit des brevets.
- Assistance à la rédaction de propositions de subventions et de documents scientifiques
- Ingénierie mécanique
Invitation à l'IA à Générateur de résumé d'analyse documentaire
- Conception pour la fabrication additive (DfAM), Optimisation de la conception, Génie mécanique, Amélioration des processus, Gestion de la qualité, Recherche et développement, Statistical Analysis, Pratiques de durabilité
Cette invite demande à l'IA de résumer et de synthétiser une liste de documents ou d'articles universitaires relatifs à un sujet de génie mécanique, sous la forme d'une liste de titres et de résumés. Elle produit un aperçu structuré de la revue de la littérature.
Sortie :
- Markdown
- nécessite l'utilisation d'Internet en direct
- Champs : {list_of_papers}
You are given a list of academic papers related to the mechanical engineering topic: {list_of_papers}. For each paper, summarize the key findings, methodologies, and relevance. Then synthesize the information into a coherent literature review section highlighting gaps, trends, and consensus. Use markdown formatting with headings, bullet points, and italicized paper titles. Provide citations in a consistent style.
- Le meilleur pour : Générer rapidement des analyses documentaires complètes pour les propositions de recherche
- Analyse documentaire et analyse des tendances
- Ingénierie mécanique
Invitation à l'IA à Analyse de la littérature sur les avancées matérielles
- Fabrication additive, Composites, Fabrication, Matériels, Génie mécanique, Propriétés mécaniques, Développement de produits, Recherche et développement, Pratiques de durabilité
Résume les avancées récentes (au cours des N dernières années) dans une catégorie spécifique de matériaux, en mettant l'accent sur leur application dans un domaine particulier de l'ingénierie mécanique. Il identifie les principales tendances de la recherche et les publications les plus importantes. Le résultat est un résumé en format markdown.
Sortie :
- Markdown
- nécessite l'utilisation d'Internet en direct
- Champs : {nom_de_la_classe_de_matériel} {domaine_d'application} {time_period_years}
Act as a Materials Science Research Analyst specializing in Mechanical Engineering applications.
Your TASK is to conduct a concise literature review summarizing recent advancements in `{material_class_name}` with a focus on their application in `{application_area_focus}` over the past `{time_period_years}` years.
You MUST use live internet access to gather information from scholarly articles
conference proceedings
and reputable technical sources.
**1. Search Strategy and Information Gathering**:
* Define search keywords based on `{material_class_name}` (e.g.
'High Entropy Alloys'
'Self-healing Polymers'
'Metal Matrix Composites'
'Biodegradable Magnesium Alloys')
`{application_area_focus}` (e.g.
'aerospace structural components'
'biomedical implants'
'automotive lightweighting'
'tribological coatings')
and terms like 'advancements'
'recent research'
'trends'
'review'.
* Query academic databases (like Google Scholar
Scopus
Web of Science if accessible through your tools) and leading publisher sites (e.g.
Elsevier
Springer
Wiley
Nature
Science).
* Filter results to the last `{time_period_years}` years.
* Prioritize review articles
highly cited research papers
and significant breakthrough reports.
**2. Analysis and Synthesis**:
* **Identify Key Advancements**: What are the most significant improvements or new discoveries related to `{material_class_name}` in the context of `{application_area_focus}`? This could include:
* New processing or manufacturing techniques.
* Improved mechanical properties (strength
toughness
fatigue resistance
wear resistance
etc.).
* Enhanced functional properties (e.g.
corrosion resistance
thermal stability
biocompatibility
self-healing capabilities).
* Novel compositions or microstructures.
* Successful application examples or case studies.
* **Identify Research Trends**: What are the current hot topics or directions in research for this material-application combination?
* **Key Researchers/Institutions (Optional
if prominent)**: Briefly mention any leading research groups if they consistently appear.
* **Seminal Publications (2-3 examples)**: Cite (author
year
title
journal if possible
or just a descriptive reference) a few highly impactful papers from the review period that exemplify these advancements.
**3. Output Format (Markdown)**:
* **Title**: Literature Review: Recent Advancements in `{material_class_name}` for `{application_area_focus}` (Last `{time_period_years}` Years).
* **1. Introduction**: Briefly introduce `{material_class_name}` and its importance in `{application_area_focus}`.
* **2. Key Advancements**: Use subheadings for different categories of advancements if logical
or a narrative style. Be specific and provide examples.
* **3. Current Research Trends**: Summarize the dominant research directions.
* **4. Notable Publications**: List 2-3 key papers as described above.
* **5. Challenges and Future Outlook**: Briefly discuss any remaining challenges or potential future developments.
* **6. Sources Consulted (General Statement)**: Indicate that the review is based on publicly available scholarly literature and state if specific databases were primarily used if known by your tools.
**IMPORTANT**: The summary should be concise yet informative
targeted at a mechanical engineer looking for an update on the topic. Ensure information is up-to-date by leveraging live internet search. Properly attribute information conceptually if not citing formally (e.g.
'Research indicates...'
'Studies have shown...').
- Idéal pour : Fournir aux ingénieurs en mécanique une vue d'ensemble résumée des avancées récentes, des tendances en matière de recherche et des publications clés dans une classe de matériaux spécifique en rapport avec leur domaine d'application.
- Analyse documentaire et analyse des tendances
- Ingénierie mécanique
Invitation à l'IA à Outil d'identification des chercheurs clés
- Fabrication additive, Conception pour la fabrication additive (DfAM), Principes fondamentaux de l'ingénierie, Génie mécanique, Développement de produits, Recherche et développement, Robotique, Pratiques de durabilité
Identifie et répertorie les principaux chercheurs ou groupes de recherche, ainsi que leurs institutions affiliées, très actifs dans un domaine de niche de l'ingénierie mécanique. Cela permet de trouver des collaborateurs, des experts ou de la documentation pertinente. Le résultat est une liste CSV.
Sortie :
- CSV
- nécessite l'utilisation d'Internet en direct
- Champs : {niche_mechanical_engineering_topic} {number_of_results_desired}
Act as a Research Intelligence Analyst specializing in mapping expertise in engineering fields.
Your TASK is to identify key researchers (or research groups) and their institutions who are highly active and influential in the `{niche_mechanical_engineering_topic}`. You should aim to provide `{number_of_results_desired}` distinct entries.
You MUST use live internet access to query academic search engines
university research portals
and publication databases.
**1. Search and Identification Strategy**:
* Formulate targeted search queries using keywords derived from `{niche_mechanical_engineering_topic}` (e.g.
if topic is 'triboelectric nanogenerators for vibration energy harvesting'
use these terms plus 'researcher'
'professor'
'publications'
'lab').
* Utilize academic search engines (Google Scholar
Semantic Scholar
etc.) and potentially specific university/research institution websites.
* Look for indicators of significant contribution and activity:
* High number of relevant publications in reputable journals/conferences.
* High citation counts for relevant work.
* Principal Investigator (PI) status on relevant grants or projects.
* Keynote speaker invitations or leadership roles in relevant conferences/societies.
* Patents filed in the area.
* Prioritize individuals who have published consistently or significantly on the topic in recent years (e.g.
last 5-10 years).
**2. Data Extraction and Formatting**:
* For each identified key researcher/group
try to find:
* Full Name of the lead researcher (if an individual) or Research Group Name.
* Primary Affiliated Institution (University
Research Institute).
* Department or Lab (if readily available).
* A key publication or a very brief summary of their focus within the `{niche_mechanical_engineering_topic}` (e.g.
'Focus on material development for TENGs' or a specific highly cited paper title).
* (Optional but helpful) A URL to their official profile or lab page if easily found.
**3. Output Format (CSV)**:
* You MUST return the results as a single CSV string.
* The CSV header row MUST be: `Rank
Researcher_Or_Group_Name
Affiliated_Institution
Department_Or_Lab
Focus_Or_Key_Publication
Profile_URL`
* Populate the table with up to `{number_of_results_desired}` entries
ranked roughly by perceived influence or activity if possible (this is subjective
so best effort is fine
or simply list them). If ranking is hard
'Rank' can be a simple serial number.
* If some information (e.g.
Department
Profile_URL) is not easily found
leave that cell blank in the CSV row but maintain comma separators.
Example of a CSV row:
`1
Prof. John Doe
Massachusetts Institute of Technology
Dept. of Mechanical Engineering
Pioneering work on XYZ sensors
http://mit.edu/johndoe`
**IMPORTANT**: The quality of results depends on effective searching and interpretation of academic output. Prioritize relevance to the `{niche_mechanical_engineering_topic}`. State that the list is based on publicly available information accessed at the time of the query.
- Idéal pour : Aider les ingénieurs en mécanique à identifier les principaux chercheurs et institutions dans des domaines de niche pour une collaboration, une consultation d'experts ou une recherche documentaire.
- Analyse documentaire et analyse des tendances
- Ingénierie mécanique
Invitation à l'IA à Méthodologie de conception Analyse de l'évolution
- Méthodologie Agile, Amélioration continue, Conception pour la fabrication additive (DfAM), Conception pour Six Sigma (DfSS), Pensée conceptuelle, Production allégée, Développement de produits, Gestion de la qualité
Analyse et décrit l'évolution historique, les étapes clés et les tendances actuelles d'une méthodologie ou d'une philosophie de conception mécanique spécifique. Cela aide les ingénieurs à comprendre le contexte et les progrès des approches de conception. Le résultat est un récit ou une chronologie au format markdown.
Sortie :
- Markdown
- nécessite l'utilisation d'Internet en direct
- Champs : {design_methodology_name} {approximate_start_year_or_era}
Act as an Engineering Design Historian and Theorist.
Your TASK is to analyze and outline the evolution of the mechanical design methodology known as `{design_methodology_name}`
starting from approximately `{approximate_start_year_or_era}` to the present day.
You should use live internet access to research its history
key proponents
seminal publications/tools
and current trends.
**1. Research and Information Gathering**:
* Use `{design_methodology_name}` (e.g.
'Design for Six Sigma (DFSS)'
'Axiomatic Design'
'TRIZ (Theory of Inventive Problem Solving)'
'Robust Design (Taguchi Methods)'
'Topology Optimization') and terms like 'history'
'evolution'
'key developments'
'timeline'
'impact' in your searches.
* Consult scholarly articles
books
historical accounts
and reputable engineering resources.
* Identify:
* Origins and foundational concepts/principles.
* Key individuals or organizations that developed or promoted the methodology.
* Significant milestones
publications
or software tools that marked turning points.
* How the methodology has been adapted or integrated with other approaches over time.
* Its impact on mechanical engineering practice.
* Current trends
criticisms
or areas of ongoing development related to it.
**2. Structuring the Analysis (Output as Markdown)**:
You can choose a chronological narrative or a timeline-based structure. Ensure the following aspects are covered:
* **Title**: The Evolution of `{design_methodology_name}` in Mechanical Engineering.
* **1. Introduction**: Briefly define `{design_methodology_name}` and state its core objectives.
* **2. Origins and Early Development (around `{approximate_start_year_or_era}` and following period)**:
* Describe the context or problems that led to its development.
* Mention key founders/pioneers and their initial contributions.
* **3. Key Milestones and Expansion**:
* Detail significant developments
theoretical refinements
or practical breakthroughs in chronological order or by thematic progression.
* Mention any influential books
papers
or case studies that popularized or validated the methodology.
* Discuss the development of associated tools or software
if applicable.
* **4. Mainstream Adoption and Impact**:
* When and how did it gain wider acceptance in industry and academia?
* What has been its primary impact on how mechanical design is approached or taught?
* **5. Current Status
Trends
and Criticisms**:
* How is `{design_methodology_name}` viewed or used today?
* Are there new interpretations
integrations with digital tools (e.g.
AI
MBSE)
or extensions of the methodology?
* Are there any common criticisms or limitations discussed in the literature?
* **6. Future Outlook**:
* Brief speculation on its future trajectory or relevance.
**IMPORTANT**: The analysis should be insightful and provide a good historical overview for a mechanical engineer. Focus on conceptual evolution and practical impact. Ensure information is corroborated from reliable sources accessed via the internet.
- Idéal pour : Fournir aux ingénieurs en mécanique une perspective historique et une compréhension actuelle de la manière dont les méthodologies de conception spécifiques ont évolué et ont eu un impact sur le domaine.
- Analyse documentaire et analyse des tendances
- Ingénierie mécanique
Invitation à l'IA à Identification des lacunes de connaissances à partir des résumés
- Fabrication additive, Conception pour la fabrication additive (DfAM), Innovation, Génie mécanique, Amélioration des processus, Gestion de la qualité, Recherche et développement, Pratiques de durabilité
Identifie les lacunes potentielles en matière de connaissances ou les domaines de recherche future dans un domaine spécifique de l'ingénierie mécanique en analysant une collection de résumés de recherche récents. Cela aide les chercheurs à identifier de nouvelles questions de recherche. Le résultat est une liste markdown.
Sortie :
- Markdown
- ne nécessite pas d'Internet en direct
- Champs : {research_area_description_text} {collection_of_abstracts_text}
Act as a Research Strategist with expertise in identifying emerging research fronts in Mechanical Engineering.
Your TASK is to analyze a `{collection_of_abstracts_text}` from recent research within the `{research_area_description_text}` and identify potential knowledge gaps
unanswered questions
or underexplored aspects that could suggest avenues for future research.
**1. Input Processing**:
* `{research_area_description_text}`: A clear description of the specific field or sub-field of mechanical engineering (e.g.
'Additive Manufacturing of Nickel Superalloys for High-Temperature Applications'
'Vibration Damping using Metamaterials in Rotating Machinery'
'Machine Learning for Predictive Maintenance of Hydraulic Systems').
* `{collection_of_abstracts_text}`: A single block of text containing multiple research paper abstracts (e.g.
5-10 abstracts). Each abstract should be clearly demarcated if possible
or just concatenated.
**2. Analysis Methodology**:
* **Thematic Analysis**: Read through all abstracts to understand the main themes
methodologies
and findings being reported in the `{research_area_description_text}`.
* **Identify Common Focus Areas**: What specific problems
materials
techniques
or applications are frequently addressed?
* **Look for Limitations Stated**: Do any abstracts explicitly mention limitations of their own work
or suggest future work? These are direct pointers to gaps.
* **Note Unaddressed Intersections**: Are there logical connections between sub-topics that don't seem to be explored? (e.g.
if one abstract discusses material A for application X
and another discusses material B for application X
is the comparison between A and B for X a gap?).
* **Consider Unexplored Parameters or Conditions**: Are studies typically focused on a narrow range of conditions
materials
or scales? What happens outside these ranges?
* **Methodological Gaps**: Are certain advanced methodologies (e.g.
novel simulation techniques
AI/ML approaches
new experimental methods) not yet widely applied in this area despite potential benefits?
* **Contradictory or Inconclusive Findings**: Do any abstracts present conflicting results or highlight areas where findings are still inconclusive?
* **Assumptions and Simplifications**: What common assumptions are made that might not hold true in all scenarios
suggesting a need for more complex models or experiments?
**3. Output Format (Markdown)**:
* **Title**: Potential Knowledge Gaps and Future Research Directions in `{research_area_description_text}` (Based on Provided Abstracts).
* **1. Overview of Current Research Focus**: Briefly summarize the dominant themes identified in the provided abstracts.
* **2. Identified Potential Knowledge Gaps / Research Questions**: This is the main section. List each potential gap or research question as a clear
concise bullet point. For each point
briefly explain the reasoning based on your analysis of the abstracts. Examples:
* `* **The long-term performance of [Material X] under cyclic thermal loading combined with [Environmental Factor Y] appears underexplored.** While abstracts A and B discuss thermal performance
and abstract C mentions Factor Y independently
their combined effect is not addressed.`
* `* **Comparative analysis of [Technique 1] vs. [Technique 2] for achieving [Specific Outcome Z] is lacking.** Abstracts D and E advocate for different techniques but no direct comparison of efficacy or cost-effectiveness was found.`
* `* **Most studies focus on [Specific Scale/Condition A]
leaving a gap in understanding behavior at [Different Scale/Condition B].** This is evident as abstracts F
G
H all operate within Condition A.`
* **3. Concluding Remarks**: Briefly reiterate the value of exploring these gaps.
**IMPORTANT**: The identified gaps MUST be logically derived from the content of the `{collection_of_abstracts_text}` and the context of `{research_area_description_text}`. Avoid speculating wildly beyond the provided information. The output should stimulate critical thinking for new research.
- Idéal pour : Aider les chercheurs à identifier les nouvelles questions de recherche et les lacunes de connaissances dans un sous-domaine de l'ingénierie mécanique en analysant les tendances et les limites dans une collection de résumés récents.
- Évaluation des risques et analyse de la sécurité
- Ingénierie mécanique
Invitation à l'IA à Génération d'un tableau AMDE pour le sous-système
- Conception pour la fabrication (DfM), Validation de la conception, Analyse des modes de défaillance et de leurs effets (AMDEC), Génie mécanique, Amélioration des processus, Contrôle de qualité, Gestion de la qualité, Analyse des risques, Gestion des risques
Génère un modèle d'analyse des modes de défaillance et de leurs effets (AMDE) pour un sous-système mécanique spécifié, énumérant les modes de défaillance potentiels, les causes des effets et recommandant des niveaux initiaux de gravité et de détection. Cela permet de lancer le processus d'évaluation des risques. Le résultat est une structure de tableau CSV.
Sortie :
- CSV
- ne nécessite pas d'Internet en direct
- Champs : {subsystem_name_and_function} {key_components_list_csv} {operating_environment_description}
Act as a Reliability Engineer specializing in FMEA for Mechanical Systems.
Your TASK is to generate a structured FMEA table (as a CSV string) for the `{subsystem_name_and_function}`
considering its `{key_components_list_csv}` and `{operating_environment_description}`. You should populate the table with common
plausible failure modes
causes
and effects
and suggest initial placeholder RPN ratings or qualitative assessments.
**1. Input Analysis**:
* `{subsystem_name_and_function}`: Clear description (e.g.
'Fuel Pumping Unit for Diesel Engine - delivers pressurized fuel to injectors'
'Landing Gear Retraction Actuator - hydraulic cylinder that retracts/deploys landing gear').
* `{key_components_list_csv}`: CSV string listing major components within the subsystem (e.g.
'Pump_Housing
Electric_Motor
Impeller
Pressure_Regulator
Seals
Bearings').
* `{operating_environment_description}`: Details of operational context (e.g.
'Automotive under-hood
-40C to 120C
high vibration
exposure to fuel/oil'; 'Aerospace
high cycle fatigue
wide temperature range
safety-critical').
**2. FMEA Table Generation Logic**: For each key component in `{key_components_list_csv}` (or for the subsystem as a whole
focusing on its functions):
* **Identify Potential Failure Modes**: What are common ways this component or function can fail? (e.g.
For a pump: 'Fails to deliver pressure'
'Leaks'
'Noisy operation'
'Seizure'. For a motor: 'Fails to start'
'Overheats'
'Excessive vibration').
* **Identify Potential Causes**: For each failure mode
list plausible causes (e.g.
For pump 'Fails to deliver pressure': 'Impeller wear'
'Motor failure'
'Blocked inlet'
'Internal leakage'). Consider material degradation
wear and tear
manufacturing defects
operational errors
environmental factors from `{operating_environment_description}`.
* **Identify Potential Effects**: For each failure mode
what are the consequences on the subsystem
the larger system
and the end-user/environment? (e.g.
For pump 'Fails to deliver pressure': 'Engine stalls (system effect)'
'Vehicle stranded (end-user effect)'
'Loss of mission (aerospace context)').
* **Current Controls (Prevention/Detection)**: Suggest typical preventative controls (design features
manufacturing tests) or detection controls (sensors
inspection methods) that might be in place. If none obvious
state 'None Assumed' or 'To be determined'.
* **Assign Initial S-O-D Ratings (Severity
Occurrence
Detection)**: Use a 1-10 scale (10 being worst for S/O
10 being worst/hardest for D). These are INITIAL ESTIMATES to be reviewed by the engineering team.
* Severity (S): Based on the worst potential effect.
* Occurrence (O): Likelihood of the cause occurring. Consider `{operating_environment_description}`.
* Detection (D): Likelihood of detecting the cause or failure mode before it has a major effect
based on current controls.
* **Calculate RPN (Risk Priority Number)**: S x O x D.
* **Recommended Actions (Placeholder)**: Initially can be 'Investigate further'
'Consider design change'
'Improve detection method' or leave blank for team input.
**3. Output Format (CSV String)**:
* The CSV header MUST be: `Item_Or_Function
Potential_Failure_Mode
Potential_Effect_of_Failure
Severity_S
Potential_Cause_of_Failure
Occurrence_O
Current_Design_Controls_Prevention
Current_Design_Controls_Detection
Detection_D
RPN
Recommended_Actions`
* Each row will represent one failure mode.
* Example row snippet (conceptual):
`Electric_Motor
Fails_to_start
Subsystem_inoperable
Engine_does_not_start
Vehicle_stranded
8
Open_circuit_in_winding
Corrosion_due_to_environment
4
Visual_inspection_at_assembly
None_during_operation
7
224
Review_winding_protection
Consider_sealed_unit`
**IMPORTANT**: This FMEA is a STARTER TEMPLATE. The AI should populate it with plausible
common mechanical failure scenarios. The ratings are subjective and for initial discussion by the engineering team. Emphasize that this output needs thorough review and validation by experts familiar with the specific design.
- Idéal pour : Rationaliser le processus d'AMDE en générant un tableau pré-rempli avec les modes de défaillance potentiels, les causes des effets et les indices RPN initiaux pour les sous-systèmes mécaniques.
- Évaluation des risques et analyse de la sécurité
- Ingénierie mécanique
Invitation à l'IA à Identification des risques dans les cellules de fabrication
- Amélioration continue, Ergonomie, Étude des dangers et de l'exploitabilité (HAZOP), Facteurs humains, Production allégée, Amélioration des processus, Analyse des risques, Gestion des risques, Safety
Identifie les risques potentiels pour la sécurité dans une cellule de fabrication nouvelle ou modifiée, sur la base de la description des processus et des points d'interaction humaine. Cela permet d'aborder de manière proactive les problèmes de sécurité au cours de la phase de conception. Le résultat est une liste catégorisée.
Sortie :
- Markdown
- ne nécessite pas d'Internet en direct
- Champs : {cell_layout_description} {processes_involved_list_csv} {human_interaction_points_text}
Act as a Manufacturing Safety Engineer.
Your TASK is to identify potential safety hazards for a new or modified manufacturing cell
based on the `{cell_layout_description}`
the `{processes_involved_list_csv}`
and the specified `{human_interaction_points_text}`.
You should categorize hazards for clarity.
**1. Input Analysis**:
* `{cell_layout_description}`: A textual description of the cell's physical layout
including major equipment (e.g.
'Robotic arm'
'CNC machine'
'Conveyor belt'
'Assembly station'
'Parts bins')
and their relative positions. If it's from a sketch
user describes the sketch.
* `{processes_involved_list_csv}`: CSV string listing the manufacturing processes occurring within the cell (e.g.
'Welding
Material_handling
Machining
Automated_inspection
Manual_assembly').
* `{human_interaction_points_text}`: Description of where
when
and how human operators interact with the cell (e.g.
'Loading raw materials at Station A'
'Unloading finished parts from conveyor at Station B'
'Performing maintenance on CNC machine'
'Clearing jams in robot gripper'
'Supervising automated processes').
**2. Hazard Identification Methodology**: Based on the inputs
systematically consider different types of hazards. For each identified hazard
briefly note its potential consequence.
* **Mechanical Hazards**: From moving parts
robots
machinery.
* Crushing
shearing
cutting
entanglement
impact (e.g.
robot arm movement
machine tool operation
conveyor pinch points
falling objects).
* **Electrical Hazards**: From power supplies
wiring
control panels.
* Shock
burns
arc flash.
* **Thermal Hazards**: From hot processes or components.
* Burns from welding
heated tooling
hot parts.
* **Ergonomic Hazards**: From workstation design
manual handling
repetitive tasks at `{human_interaction_points_text}`.
* Musculoskeletal disorders
strain.
* **Process-Specific Hazards**: Related to the `{processes_involved_list_csv}`.
* Welding: Fumes
UV radiation
fire.
* Machining: Flying chips
coolant exposure
tool breakage.
* Material Handling: Dropped loads
collisions with automated guided vehicles (if any).
* **Automation-Related Hazards**: Especially concerning robotics or automated machinery.
* Unexpected robot movement
programming errors
sensor failures leading to incorrect actions
trapping points between robot and fixed structures.
* **Trip
Slip
and Fall Hazards**: From cables
spills
uneven surfaces within the cell layout.
* **Chemical Hazards (if applicable)**: From coolants
lubricants
cleaning agents
process byproducts.
* **Noise Hazards**: From machinery
pneumatic systems.
**3. Output Format (Markdown)**:
* **Title**: Potential Safety Hazards for Manufacturing Cell: `{cell_layout_description (brief title form)}`
* **Introduction**: Briefly state the purpose of the hazard identification.
* **Hazard Categories (use H3 or H4 headings for each category below)**:
* **Mechanical Hazards**
* `- [Hazard 1]: Brief description
e.g.
Robot arm collision with operator at loading station. Potential Consequence: Impact injury
crushing.`
* `- [Hazard 2]: ...`
* **Electrical Hazards**
* `- [Hazard 1]: ...`
* **Thermal Hazards**
* `- [Hazard 1]: ...`
* **(And so on for all relevant categories listed in step 2)**
* **Specific Considerations for Human Interaction Points**:
* Highlight hazards particularly relevant at the points mentioned in `{human_interaction_points_text}`.
* **General Recommendations (Brief)**:
* Suggest general next steps
e.g.
'Conduct detailed risk assessment for each identified hazard.'
'Consider hierarchy of controls (elimination
substitution
engineering controls
administrative
PPE).'
**IMPORTANT**: The list should be comprehensive but focused on PLAUSIBLE hazards given the inputs. The AI is not performing a full risk assessment
just identifying potential hazards for further investigation. Encourage a systematic approach.
- Idéal pour : Identifier et classer de manière proactive les risques potentiels pour la sécurité dans l'agencement des cellules de fabrication en fonction des processus d'équipement et des points d'interaction avec l'homme.
- Évaluation des risques et analyse de la sécurité
- Ingénierie mécanique
Invitation à l'IA à Stratégies d'atténuation des défaillances dues aux vibrations
- Amélioration continue, Analyse des défaillances, Génie mécanique, Algorithmes de maintenance prédictive, Amélioration des processus, Contrôle de qualité, Gestion des risques, Analyse des vibrations
Suggère et élabore des stratégies d'atténuation potentielles pour les défaillances induites par les vibrations dans des équipements mécaniques spécifiques, sur la base d'un résumé des données relatives aux vibrations et des tentatives actuelles. Cela aide les ingénieurs à trouver des solutions pour améliorer la fiabilité. Le résultat est une liste de mots-clés.
Sortie :
- Markdown
- ne nécessite pas d'Internet en direct
- Champs : {equipment_description_text} {vibration_data_summary_text} {current_mitigation_attempts_text}
Act as a Vibration Analysis and Reliability Engineering Consultant.
Your TASK is to propose and elaborate on potential mitigation strategies for vibration-induced failures in the `{equipment_description_text}`
considering the `{vibration_data_summary_text}` and any `{current_mitigation_attempts_text}`.
You should suggest a range of solutions
from simple to more complex.
**1. Input Analysis**:
* `{equipment_description_text}`: Description of the affected equipment and its function (e.g.
'Centrifugal pump
Model XYZ
used for cooling water circulation'
'Large industrial fan mounted on steel frame'
'Pipeline section experiencing flow-induced vibration').
* `{vibration_data_summary_text}`: Key characteristics of the problematic vibration (e.g.
'High amplitude at 1x rotational speed (unbalance)'
'Dominant frequency matches nearby machine's operating speed (external source)'
'Broadband random vibration with peaks near structural resonances'
'Flow-induced vibration at 50-60 Hz'). Include specific frequencies and amplitudes if known.
* `{current_mitigation_attempts_text}`: What
if anything
has already been tried and its outcome (e.g.
'Attempted balancing
reduced vibration by 20% but still too high'
'Added stiffeners to frame
shifted resonance but problem persists at new frequency'
'None attempted yet').
**2. Mitigation Strategy Brainstorming & Elaboration**: Based on the inputs
propose several distinct strategies. For each strategy:
* **Strategy Name/Type**: (e.g.
Source Modification
Path Interruption
System Modification
Damping Treatment).
* **Specific Action(s)**: Detail the concrete steps or changes involved.
* **Principle of Operation**: Explain HOW this strategy reduces vibration or its effects in the context of the `{vibration_data_summary_text}`.
* **Applicability/Suitability**: How well does this strategy address the likely root cause suggested by the vibration data? (e.g.
If unbalance is indicated
balancing is highly applicable).
* **Potential Pros**: Advantages of this approach.
* **Potential Cons/Challenges**: Disadvantages
cost
complexity
potential side effects.
* **Consideration given `{current_mitigation_attempts_text}`**: How does this build upon or differ from what was already tried?
**Categories of Strategies to Consider (examples
tailor to the problem)**:
* **Source Treatment**:
* Balancing (for rotating machinery).
* Alignment (for coupled machines).
* Modifying operating speed to avoid resonance.
* Reducing fluid flow velocity or changing flow path (for FIV).
* **Path Treatment**:
* Isolation: Using resilient mounts (elastomeric
spring isolators) to decouple the source from the receiver.
* Barriers: Enclosures for noise/vibration.
* **System Response Modification**:
* Stiffening: Adding braces or gussets to shift natural frequencies away from excitation frequencies.
* Mass Addition: Adding mass to shift natural frequencies.
* Damping:
* Applied Damping Treatments (e.g.
viscoelastic layers
constrained layer damping).
* Tuned Mass Dampers (TMDs) for specific problematic frequencies.
* Active Vibration Control (more complex
using sensors
actuators
and controllers).
**3. Output Format (Markdown)**:
* **Title**: Vibration Mitigation Strategies for `{equipment_description_text}`.
* **1. Summary of Vibration Problem**: Briefly restate the core issue based on inputs.
* **2. Proposed Mitigation Strategies**: For each strategy:
* `### Strategy X: [Strategy Name/Type]`
* `**Specific Actions:**`
* `**Principle of Operation:**`
* `**Applicability/Suitability:**`
* `**Potential Pros:**`
* `**Potential Cons/Challenges:**`
* `**Relation to Previous Attempts:**`
* **3. General Recommendations & Next Steps**: Suggest a logical approach to selecting and implementing strategies (e.g.
'Start with source treatment if possible'
'Consider simulation or modal analysis to predict effectiveness of structural modifications'
'Implement incrementally and monitor results').
**IMPORTANT**: The strategies should be technically sound and relevant to the described problem. The AI should aim to provide a range of options suitable for different levels of complexity and cost.
- Idéal pour : Aider les ingénieurs mécaniciens à identifier et à évaluer diverses stratégies d'atténuation des défaillances dues aux vibrations en fonction du type d'équipement et des caractéristiques des vibrations.
Sommes-nous en train de supposer que l'IA peut toujours générer les meilleurs messages en génie mécanique ? Comment sont-elles générées ?
L'IA va-t-elle rendre les ingénieurs humains superflus ?
Articles Similaires
Équation de levage révisée du NIOSH en ergonomie de banc
Dark Web vs Darknet vs Deep Web : 101 et plus
Dernières publications et brevets sur les automates cellulaires
Outils du Darknet pour l'ingénierie et la science
101 sur la meilleure façon de lire un brevet (pour un non-avocat en brevets)
Les 20 meilleures astuces pour une recherche de brevets gratuite + bonus