Maison » Meilleures invites d'IA pour l'ingénierie mécanique

Meilleures invites d'IA pour l'ingénierie mécanique

L'IA encourage l'ingénierie mécanique
Ai ingénierie mécanique
Les outils pilotés par l'intelligence artificielle révolutionnent l'ingénierie mécanique en améliorant l'optimisation de la conception, la vitesse de simulation, la maintenance prédictive et la sélection des matériaux grâce à l'analyse avancée des données et à la reconnaissance des formes.

Les outils d'IA en ligne transforment rapidement l'ingénierie mécanique en augmentant les capacités humaines en matière de conception et d'analyse, fabricationet la maintenance. Ces systèmes d'IA peuvent traiter de grandes quantités de données, identifier des modèles complexes et générer des solutions nouvelles beaucoup plus rapidement que les méthodes traditionnelles. Par exemple, l'IA peut vous aider à optimiser les conceptions en termes de performance et de fabricabilité, à accélérer les simulations complexes, à prédire les propriétés des matériaux et à automatiser un large éventail de tâches analytiques.

Les invites fournies ci-dessous aideront par exemple à la conception générative, à l'accélération des simulations (FEA/CFD), à la maintenance prédictive où l'IA analyse les données des capteurs des machines pour prévoir les défaillances potentielles, ce qui permet un entretien proactif et minimise les temps d'arrêt, à la sélection des matériaux et à bien d'autres choses encore.

  • Compte tenu des ressources et du temps disponibles sur le serveur, les invites elles-mêmes sont réservées aux membres enregistrés et ne sont pas visibles ci-dessous si vous n'êtes pas connecté. Vous pouvez vous inscrire, 100% gratuit : 

Adhésion requise

Vous devez être membre du site pour accéder à ce contenu.

Voir les niveaux d’adhésion

Vous êtes déjà membre ? Connectez-vous ici

Invitation à l'IA à Identification des lacunes de connaissances à partir des résumés

Identifie les lacunes potentielles en matière de connaissances ou les domaines de recherche future dans un domaine spécifique de l'ingénierie mécanique en analysant une collection de résumés de recherche récents. Cela aide les chercheurs à identifier de nouvelles questions de recherche. Le résultat est une liste markdown.

Sortie : 

				
					Act as a Research Strategist with expertise in identifying emerging research fronts in Mechanical Engineering.
Your TASK is to analyze a `{collection_of_abstracts_text}` from recent research within the `{research_area_description_text}` and identify potential knowledge gaps
 unanswered questions
 or underexplored aspects that could suggest avenues for future research.

**1. Input Processing**:
    *   `{research_area_description_text}`: A clear description of the specific field or sub-field of mechanical engineering (e.g.
 'Additive Manufacturing of Nickel Superalloys for High-Temperature Applications'
 'Vibration Damping using Metamaterials in Rotating Machinery'
 'Machine Learning for Predictive Maintenance of Hydraulic Systems').
    *   `{collection_of_abstracts_text}`: A single block of text containing multiple research paper abstracts (e.g.
 5-10 abstracts). Each abstract should be clearly demarcated if possible
 or just concatenated.

**2. Analysis Methodology**:
    *   **Thematic Analysis**: Read through all abstracts to understand the main themes
 methodologies
 and findings being reported in the `{research_area_description_text}`.
    *   **Identify Common Focus Areas**: What specific problems
 materials
 techniques
 or applications are frequently addressed?
    *   **Look for Limitations Stated**: Do any abstracts explicitly mention limitations of their own work
 or suggest future work? These are direct pointers to gaps.
    *   **Note Unaddressed Intersections**: Are there logical connections between sub-topics that don't seem to be explored? (e.g.
 if one abstract discusses material A for application X
 and another discusses material B for application X
 is the comparison between A and B for X a gap?).
    *   **Consider Unexplored Parameters or Conditions**: Are studies typically focused on a narrow range of conditions
 materials
 or scales? What happens outside these ranges?
    *   **Methodological Gaps**: Are certain advanced methodologies (e.g.
 novel simulation techniques
 AI/ML approaches
 new experimental methods) not yet widely applied in this area despite potential benefits?
    *   **Contradictory or Inconclusive Findings**: Do any abstracts present conflicting results or highlight areas where findings are still inconclusive?
    *   **Assumptions and Simplifications**: What common assumptions are made that might not hold true in all scenarios
 suggesting a need for more complex models or experiments?

**3. Output Format (Markdown)**:
    *   **Title**: Potential Knowledge Gaps and Future Research Directions in `{research_area_description_text}` (Based on Provided Abstracts).
    *   **1. Overview of Current Research Focus**: Briefly summarize the dominant themes identified in the provided abstracts.
    *   **2. Identified Potential Knowledge Gaps / Research Questions**: This is the main section. List each potential gap or research question as a clear
 concise bullet point. For each point
 briefly explain the reasoning based on your analysis of the abstracts. Examples:
        *   `*   **The long-term performance of [Material X] under cyclic thermal loading combined with [Environmental Factor Y] appears underexplored.** While abstracts A and B discuss thermal performance
 and abstract C mentions Factor Y independently
 their combined effect is not addressed.`
        *   `*   **Comparative analysis of [Technique 1] vs. [Technique 2] for achieving [Specific Outcome Z] is lacking.** Abstracts D and E advocate for different techniques but no direct comparison of efficacy or cost-effectiveness was found.`
        *   `*   **Most studies focus on [Specific Scale/Condition A]
 leaving a gap in understanding behavior at [Different Scale/Condition B].** This is evident as abstracts F
 G
 H all operate within Condition A.`
    *   **3. Concluding Remarks**: Briefly reiterate the value of exploring these gaps.

**IMPORTANT**: The identified gaps MUST be logically derived from the content of the `{collection_of_abstracts_text}` and the context of `{research_area_description_text}`. Avoid speculating wildly beyond the provided information. The output should stimulate critical thinking for new research.
							

Invitation à l'IA à Génération d'un tableau AMDE pour le sous-système

Génère un modèle d'analyse des modes de défaillance et de leurs effets (AMDE) pour un sous-système mécanique spécifié, énumérant les modes de défaillance potentiels, les causes des effets et recommandant des niveaux initiaux de gravité et de détection. Cela permet de lancer le processus d'évaluation des risques. Le résultat est une structure de tableau CSV.

Sortie : 

				
					Act as a Reliability Engineer specializing in FMEA for Mechanical Systems.
Your TASK is to generate a structured FMEA table (as a CSV string) for the `{subsystem_name_and_function}`
 considering its `{key_components_list_csv}` and `{operating_environment_description}`. You should populate the table with common
 plausible failure modes
 causes
 and effects
 and suggest initial placeholder RPN ratings or qualitative assessments.

**1. Input Analysis**:
    *   `{subsystem_name_and_function}`: Clear description (e.g.
 'Fuel Pumping Unit for Diesel Engine - delivers pressurized fuel to injectors'
 'Landing Gear Retraction Actuator - hydraulic cylinder that retracts/deploys landing gear').
    *   `{key_components_list_csv}`: CSV string listing major components within the subsystem (e.g.
 'Pump_Housing
Electric_Motor
Impeller
Pressure_Regulator
Seals
Bearings').
    *   `{operating_environment_description}`: Details of operational context (e.g.
 'Automotive under-hood
 -40C to 120C
 high vibration
 exposure to fuel/oil'; 'Aerospace
 high cycle fatigue
 wide temperature range
 safety-critical').

**2. FMEA Table Generation Logic**: For each key component in `{key_components_list_csv}` (or for the subsystem as a whole
 focusing on its functions):
    *   **Identify Potential Failure Modes**: What are common ways this component or function can fail? (e.g.
 For a pump: 'Fails to deliver pressure'
 'Leaks'
 'Noisy operation'
 'Seizure'. For a motor: 'Fails to start'
 'Overheats'
 'Excessive vibration').
    *   **Identify Potential Causes**: For each failure mode
 list plausible causes (e.g.
 For pump 'Fails to deliver pressure': 'Impeller wear'
 'Motor failure'
 'Blocked inlet'
 'Internal leakage'). Consider material degradation
 wear and tear
 manufacturing defects
 operational errors
 environmental factors from `{operating_environment_description}`.
    *   **Identify Potential Effects**: For each failure mode
 what are the consequences on the subsystem
 the larger system
 and the end-user/environment? (e.g.
 For pump 'Fails to deliver pressure': 'Engine stalls (system effect)'
 'Vehicle stranded (end-user effect)'
 'Loss of mission (aerospace context)').
    *   **Current Controls (Prevention/Detection)**: Suggest typical preventative controls (design features
 manufacturing tests) or detection controls (sensors
 inspection methods) that might be in place. If none obvious
 state 'None Assumed' or 'To be determined'.
    *   **Assign Initial S-O-D Ratings (Severity
 Occurrence
 Detection)**: Use a 1-10 scale (10 being worst for S/O
 10 being worst/hardest for D). These are INITIAL ESTIMATES to be reviewed by the engineering team.
        *   Severity (S): Based on the worst potential effect.
        *   Occurrence (O): Likelihood of the cause occurring. Consider `{operating_environment_description}`.
        *   Detection (D): Likelihood of detecting the cause or failure mode before it has a major effect
 based on current controls.
    *   **Calculate RPN (Risk Priority Number)**: S x O x D.
    *   **Recommended Actions (Placeholder)**: Initially can be 'Investigate further'
 'Consider design change'
 'Improve detection method' or leave blank for team input.

**3. Output Format (CSV String)**:
    *   The CSV header MUST be: `Item_Or_Function
Potential_Failure_Mode
Potential_Effect_of_Failure
Severity_S
Potential_Cause_of_Failure
Occurrence_O
Current_Design_Controls_Prevention
Current_Design_Controls_Detection
Detection_D
RPN
Recommended_Actions`
    *   Each row will represent one failure mode.
    *   Example row snippet (conceptual):
    `Electric_Motor
Fails_to_start
Subsystem_inoperable
Engine_does_not_start
Vehicle_stranded
8
Open_circuit_in_winding
Corrosion_due_to_environment
4
Visual_inspection_at_assembly
None_during_operation
7
224
Review_winding_protection
Consider_sealed_unit`

**IMPORTANT**: This FMEA is a STARTER TEMPLATE. The AI should populate it with plausible
 common mechanical failure scenarios. The ratings are subjective and for initial discussion by the engineering team. Emphasize that this output needs thorough review and validation by experts familiar with the specific design.
							

Invitation à l'IA à Identification des risques dans les cellules de fabrication

Identifie les risques potentiels pour la sécurité dans une cellule de fabrication nouvelle ou modifiée, sur la base de la description des processus et des points d'interaction humaine. Cela permet d'aborder de manière proactive les problèmes de sécurité au cours de la phase de conception. Le résultat est une liste catégorisée.

Sortie : 

				
					Act as a Manufacturing Safety Engineer.
Your TASK is to identify potential safety hazards for a new or modified manufacturing cell
 based on the `{cell_layout_description}`
 the `{processes_involved_list_csv}`
 and the specified `{human_interaction_points_text}`.
You should categorize hazards for clarity.

**1. Input Analysis**:
    *   `{cell_layout_description}`: A textual description of the cell's physical layout
 including major equipment (e.g.
 'Robotic arm'
 'CNC machine'
 'Conveyor belt'
 'Assembly station'
 'Parts bins')
 and their relative positions. If it's from a sketch
 user describes the sketch.
    *   `{processes_involved_list_csv}`: CSV string listing the manufacturing processes occurring within the cell (e.g.
 'Welding
Material_handling
Machining
Automated_inspection
Manual_assembly').
    *   `{human_interaction_points_text}`: Description of where
 when
 and how human operators interact with the cell (e.g.
 'Loading raw materials at Station A'
 'Unloading finished parts from conveyor at Station B'
 'Performing maintenance on CNC machine'
 'Clearing jams in robot gripper'
 'Supervising automated processes').

**2. Hazard Identification Methodology**: Based on the inputs
 systematically consider different types of hazards. For each identified hazard
 briefly note its potential consequence.
    *   **Mechanical Hazards**: From moving parts
 robots
 machinery.
        *   Crushing
 shearing
 cutting
 entanglement
 impact (e.g.
 robot arm movement
 machine tool operation
 conveyor pinch points
 falling objects).
    *   **Electrical Hazards**: From power supplies
 wiring
 control panels.
        *   Shock
 burns
 arc flash.
    *   **Thermal Hazards**: From hot processes or components.
        *   Burns from welding
 heated tooling
 hot parts.
    *   **Ergonomic Hazards**: From workstation design
 manual handling
 repetitive tasks at `{human_interaction_points_text}`.
        *   Musculoskeletal disorders
 strain.
    *   **Process-Specific Hazards**: Related to the `{processes_involved_list_csv}`.
        *   Welding: Fumes
 UV radiation
 fire.
        *   Machining: Flying chips
 coolant exposure
 tool breakage.
        *   Material Handling: Dropped loads
 collisions with automated guided vehicles (if any).
    *   **Automation-Related Hazards**: Especially concerning robotics or automated machinery.
        *   Unexpected robot movement
 programming errors
 sensor failures leading to incorrect actions
 trapping points between robot and fixed structures.
    *   **Trip
 Slip
 and Fall Hazards**: From cables
 spills
 uneven surfaces within the cell layout.
    *   **Chemical Hazards (if applicable)**: From coolants
 lubricants
 cleaning agents
 process byproducts.
    *   **Noise Hazards**: From machinery
 pneumatic systems.

**3. Output Format (Markdown)**:
    *   **Title**: Potential Safety Hazards for Manufacturing Cell: `{cell_layout_description (brief title form)}`
    *   **Introduction**: Briefly state the purpose of the hazard identification.
    *   **Hazard Categories (use H3 or H4 headings for each category below)**:
        *   **Mechanical Hazards**
            *   `- [Hazard 1]: Brief description
 e.g.
 Robot arm collision with operator at loading station. Potential Consequence: Impact injury
 crushing.`
            *   `- [Hazard 2]: ...`
        *   **Electrical Hazards**
            *   `- [Hazard 1]: ...`
        *   **Thermal Hazards**
            *   `- [Hazard 1]: ...`
        *   **(And so on for all relevant categories listed in step 2)**
    *   **Specific Considerations for Human Interaction Points**:
        *   Highlight hazards particularly relevant at the points mentioned in `{human_interaction_points_text}`.
    *   **General Recommendations (Brief)**:
        *   Suggest general next steps
 e.g.
 'Conduct detailed risk assessment for each identified hazard.'
 'Consider hierarchy of controls (elimination
 substitution
 engineering controls
 administrative
 PPE).'

**IMPORTANT**: The list should be comprehensive but focused on PLAUSIBLE hazards given the inputs. The AI is not performing a full risk assessment
 just identifying potential hazards for further investigation. Encourage a systematic approach.
							

Invitation à l'IA à Stratégies d'atténuation des défaillances dues aux vibrations

Suggère et élabore des stratégies d'atténuation potentielles pour les défaillances induites par les vibrations dans des équipements mécaniques spécifiques, sur la base d'un résumé des données relatives aux vibrations et des tentatives actuelles. Cela aide les ingénieurs à trouver des solutions pour améliorer la fiabilité. Le résultat est une liste de mots-clés.

Sortie : 

				
					Act as a Vibration Analysis and Reliability Engineering Consultant.
Your TASK is to propose and elaborate on potential mitigation strategies for vibration-induced failures in the `{equipment_description_text}`
 considering the `{vibration_data_summary_text}` and any `{current_mitigation_attempts_text}`.
You should suggest a range of solutions
 from simple to more complex.

**1. Input Analysis**:
    *   `{equipment_description_text}`: Description of the affected equipment and its function (e.g.
 'Centrifugal pump
 Model XYZ
 used for cooling water circulation'
 'Large industrial fan mounted on steel frame'
 'Pipeline section experiencing flow-induced vibration').
    *   `{vibration_data_summary_text}`: Key characteristics of the problematic vibration (e.g.
 'High amplitude at 1x rotational speed (unbalance)'
 'Dominant frequency matches nearby machine's operating speed (external source)'
 'Broadband random vibration with peaks near structural resonances'
 'Flow-induced vibration at 50-60 Hz'). Include specific frequencies and amplitudes if known.
    *   `{current_mitigation_attempts_text}`: What
 if anything
 has already been tried and its outcome (e.g.
 'Attempted balancing
 reduced vibration by 20% but still too high'
 'Added stiffeners to frame
 shifted resonance but problem persists at new frequency'
 'None attempted yet').

**2. Mitigation Strategy Brainstorming & Elaboration**: Based on the inputs
 propose several distinct strategies. For each strategy:
    *   **Strategy Name/Type**: (e.g.
 Source Modification
 Path Interruption
 System Modification
 Damping Treatment).
    *   **Specific Action(s)**: Detail the concrete steps or changes involved.
    *   **Principle of Operation**: Explain HOW this strategy reduces vibration or its effects in the context of the `{vibration_data_summary_text}`.
    *   **Applicability/Suitability**: How well does this strategy address the likely root cause suggested by the vibration data? (e.g.
 If unbalance is indicated
 balancing is highly applicable).
    *   **Potential Pros**: Advantages of this approach.
    *   **Potential Cons/Challenges**: Disadvantages
 cost
 complexity
 potential side effects.
    *   **Consideration given `{current_mitigation_attempts_text}`**: How does this build upon or differ from what was already tried?

    **Categories of Strategies to Consider (examples
 tailor to the problem)**:
    *   **Source Treatment**:
        *   Balancing (for rotating machinery).
        *   Alignment (for coupled machines).
        *   Modifying operating speed to avoid resonance.
        *   Reducing fluid flow velocity or changing flow path (for FIV).
    *   **Path Treatment**:
        *   Isolation: Using resilient mounts (elastomeric
 spring isolators) to decouple the source from the receiver.
        *   Barriers: Enclosures for noise/vibration.
    *   **System Response Modification**:
        *   Stiffening: Adding braces or gussets to shift natural frequencies away from excitation frequencies.
        *   Mass Addition: Adding mass to shift natural frequencies.
        *   Damping: 
            *   Applied Damping Treatments (e.g.
 viscoelastic layers
 constrained layer damping).
            *   Tuned Mass Dampers (TMDs) for specific problematic frequencies.
        *   Active Vibration Control (more complex
 using sensors
 actuators
 and controllers).

**3. Output Format (Markdown)**:
    *   **Title**: Vibration Mitigation Strategies for `{equipment_description_text}`.
    *   **1. Summary of Vibration Problem**: Briefly restate the core issue based on inputs.
    *   **2. Proposed Mitigation Strategies**: For each strategy:
        *   `### Strategy X: [Strategy Name/Type]`
            *   `**Specific Actions:**`
            *   `**Principle of Operation:**`
            *   `**Applicability/Suitability:**`
            *   `**Potential Pros:**`
            *   `**Potential Cons/Challenges:**`
            *   `**Relation to Previous Attempts:**`
    *   **3. General Recommendations & Next Steps**: Suggest a logical approach to selecting and implementing strategies (e.g.
 'Start with source treatment if possible'
 'Consider simulation or modal analysis to predict effectiveness of structural modifications'
 'Implement incrementally and monitor results').

**IMPORTANT**: The strategies should be technically sound and relevant to the described problem. The AI should aim to provide a range of options suitable for different levels of complexity and cost.
							

Invitation à l'IA à Contrôle de la conformité de la sécurité de la conception de la machine

Évalue les caractéristiques d'une conception de machine par rapport à des extraits de clauses de normes de sécurité pertinentes fournies par l'utilisateur, afin d'identifier les zones de non-conformité potentielles. Cela permet de concevoir des machines plus sûres dès le départ. Le résultat est une liste de contrôle de type "markdown".

Sortie : 

				
					Act as a Machinery Safety Specialist with expertise in CE Marking/OSHA compliance (or general machinery safety principles).
Your TASK is to perform a preliminary safety compliance check of the described `{machine_design_features_description_text}` against the provided `{safety_standard_clauses_text}`. Consider the general safety expectations for the `{country_of_operation_for_context}` if it influences interpretation (e.g. EU vs USA).

**1. Input Analysis**:
    *   `{machine_design_features_description_text}`: A textual description of the machine's key design features
 safety components (guards
 E-stops
 interlocks)
 operational modes
 and human interaction points.
    *   `{safety_standard_clauses_text}`: Text containing specific clauses or requirements excerpted from relevant safety standard(s) (e.g.
 snippets from ISO 12100
 ISO 13849-1
 IEC 60204-1
 or specific Type-C standards). The user provides these excerpts.
    *   `{country_of_operation_for_context}`: The intended country or region of operation (e.g.
 'European Union'
 'USA'
 'China')
 as general safety philosophies can differ.

**2. Compliance Check Methodology**: For EACH provided clause in `{safety_standard_clauses_text}`:
    *   **Understand Clause Requirement**: Interpret the main safety objective or requirement of the clause.
    *   **Compare with Design Features**: Assess the `{machine_design_features_description_text}` against this specific requirement.
        *   Does the design appear to meet the requirement?
        *   Are there features that clearly violate or contradict the requirement?
        *   Is there insufficient information in the design description to make a judgment?
    *   **Identify Potential Gaps or Non-Compliances**: Clearly state where the design may fall short.
    *   **Suggest Areas for Improvement or Verification**: What specific aspects of the design should be reviewed
 modified
 or further documented to ensure compliance with this clause?

**3. Output Format (Markdown)**:
    *   **Title**: Preliminary Safety Compliance Check: [Machine Name/Type from description] vs. Provided Standard Clauses.
    *   **Context**: Machine intended for operation in: `{country_of_operation_for_context}`.
    *   **Compliance Checklist**: For each clause provided by the user:
        *   `---`
        *   `**Clause Reference:** [Quote or clearly reference the clause from {safety_standard_clauses_text}]`
        *   `**Clause Summary/Objective:** [Your brief interpretation of what the clause aims to achieve]`
        *   `**Assessment against Machine Design ({machine_design_features_description_text}):**`
            *   `  - **Compliance Status:** [Compliant / Potentially Non-Compliant / Insufficient Information / Partially Compliant]`
            *   `  - **Observations/Reasoning:** [Explain your assessment based on the design features. Be specific.]`
            *   `  - **Potential Gaps Identified (if any):**`
                *   `    - Gap 1: ...`
                *   `    - Gap 2: ...`
            *   `  - **Recommendations/Questions for Design Team:**`
                *   `    - Recommendation 1: e.g.
 'Verify guard opening sizes against EN ISO 13857 for this hazard zone.'`
                *   `    - Question 1: e.g.
 'Is the emergency stop a Category 0 or Category 1 stop as per IEC 60204-1?'`
    *   `---`
    *   **Overall Disclaimer**: `This is a preliminary assessment based SOLELY on the provided design description and standard excerpts. A full compliance assessment requires a detailed review of the complete machine
 its documentation
 a full risk assessment
 and consultation of the complete unabridged standards.`

**IMPORTANT**: The AI is NOT certifying compliance. It is identifying potential areas of concern or questions based on a limited comparison. The assessment should be objective and constructive
 aiming to help the design team improve safety. If a clause is very complex or requires deep domain-specific knowledge not available
 it's okay to state that a specialist review is needed for that point.
							

Invitation à l'IA à Évaluation des risques éthiques pour les projets mécaniques

Cette question guide l'IA dans l'analyse des risques éthiques et des conséquences sociétales d'un projet d'ingénierie mécanique spécifique, en tenant compte des facteurs environnementaux, de sécurité et d'impact social. Elle exige une description détaillée du projet et de l'application prévue afin de fournir une évaluation structurée des risques éthiques avec des recommandations de mesures d'atténuation.

Sortie : 

				
					Analyze the following mechanical engineering project for potential ethical risks and societal consequences. The project description is: {project_description}. The intended application is: {intended_application}. Please provide a detailed ethical risk assessment that includes: 1) Identification of possible environmental impacts 2) Safety concerns for users and communities 3) Social and economic consequences 4) Recommendations for mitigating identified risks. Format your response using clear headings and bullet points for each section. Capitalize important keywords and use markdown for readability.
							

Invitation à l'IA à Générateur de rapports sur le développement durable et l'impact environnemental

Cette invite demande à l'IA de générer un rapport complet sur le développement durable et l'impact environnemental d'une technologie ou d'un processus d'ingénierie mécanique donné, en tenant compte de l'analyse du cycle de vie, des matériaux utilisés et de la consommation d'énergie. L'utilisateur saisit le nom de la technologie et les paramètres clés.

Sortie : 

				
					Generate a detailed sustainability and environmental impact report for the mechanical engineering technology named {technology_name}. Use the following key parameters to guide your analysis: {key_parameters}. Include sections on: 1) Lifecycle environmental impact including raw materials sourcing and disposal 2) Energy consumption and efficiency 3) Potential for recycling or reuse 4) Recommendations for improving sustainability. Use markdown formatting with headings, bullet points, and bold important terms for clarity.
							

Invitation à l'IA à Analyse des implications politiques des innovations mécaniques

Cette invite demande à l'IA d'évaluer les implications politiques et réglementaires du déploiement d'une nouvelle innovation en ingénierie mécanique. L'utilisateur fournit la description de l'innovation et la région ou le pays cible afin d'adapter l'analyse à la législation et aux normes pertinentes.

Sortie : 

				
					Evaluate the policy and regulatory implications of the following mechanical engineering innovation: {innovation_description}. Focus your analysis on the target region or country: {target_region}. Outline existing regulations, standards, and compliance requirements that could affect deployment. Provide recommendations on policy adaptation or lobbying strategies to facilitate innovation adoption. Use numbered lists and clear subheadings to organize your response.
							

Invitation à l'IA à Générateur de scénarios de dilemmes éthiques pour les ingénieurs

Cette invite demande à l'IA de créer des scénarios réalistes de dilemmes éthiques spécifiquement adaptés aux ingénieurs en mécanique, sur la base d'un sujet ou d'une technologie donné(e). Elle aide les professionnels à anticiper et à discuter des situations difficiles nécessitant une prise de décision éthique.

Sortie : 

				
					Generate 3 detailed ethical dilemma scenarios related to the mechanical engineering topic: {topic}. For each scenario, include: 1) A brief description of the situation 2) The conflicting ethical principles involved 3) Potential consequences of different decisions 4) Suggested approaches to resolve the dilemma. Format the output as a JSON array with keys: 'scenario', 'ethical_conflict', 'consequences', and 'resolution'. Capitalize key terms in the text for emphasis.
							

Invitation à l'IA à Traduction des spécifications techniques

Traduire un bloc de spécifications techniques pour un composant ou un système mécanique d'une langue source vers une langue cible en veillant à l'exactitude de la terminologie. Cela facilite la collaboration internationale et la documentation des produits. Le résultat est le texte traduit.

Sortie : 

				
					Act as a Technical Translator specializing in Mechanical Engineering documentation.
Your TASK is to translate the provided `{technical_specifications_text}` from `{source_language_name_or_code}` to `{target_language_name_or_code}`.
You MUST prioritize technical accuracy and the correct translation of specialized mechanical engineering terminology.

**1. Input Parameters**:
    *   `{source_language_name_or_code}`: The language of the input text (e.g.
 'English'
 'German'
 'zh-CN').
    *   `{target_language_name_or_code}`: The language into which the text should be translated (e.g.
 'Spanish'
 'French'
 'ja-JP').
    *   `{technical_specifications_text}`: The block of text containing technical specifications. This may include parameters
 material callouts
 performance data
 testing standards
 etc.

**2. Translation Process**:
    *   **Understand Context**: Parse the `{technical_specifications_text}` to understand the component/system being described.
    *   **Terminology Management**:
        *   Identify key technical terms
 units of measure
 and industry-specific jargon.
        *   Translate these terms with high fidelity
 using established technical equivalents in the `{target_language_name_or_code}`. AVOID literal translations that might be technically incorrect.
        *   Ensure consistency in terminology throughout the translated text.
    *   **Preserve Meaning and Structure**:
        *   Translate not just words
 but the precise technical meaning of each specification point.
        *   Maintain the original formatting (e.g.
 bullet points
 numbered lists
 table-like structures if discernible in plain text) as much as possible in the translated output.
    *   **Units of Measure**:
        *   If units are present (e.g.
 mm
 MPa
 kg)
 generally retain them as they are
 as these are often internationally understood. If conversion is explicitly part of a localization requirement (not requested here but good to be aware of)
 that would be a separate instruction. For this task
 keep units as in source unless the unit name itself needs translation (e.g.
 'pounds' to 'kilograms' is a conversion
 but if the word 'pounds' appeared it would be translated if appropriate). Assume standard SI/metric units are preferred if ambiguity arises and context suggests a technical document for global use.

**3. Output**:
    *   The output MUST be the translated text in the `{target_language_name_or_code}` ONLY.
    *   Do NOT include any of the original `{technical_specifications_text}` unless it's part of a bilingual presentation format (which is not requested here).
    *   Do NOT include any comments or annotations unless specifically part of the original text.

**IMPORTANT**: Accuracy is PARAMOUNT. If a term is highly ambiguous and could have multiple technical translations
 choose the one most commonly accepted in general mechanical engineering for the `{target_language_name_or_code}`. If you are an AI with limitations in translation quality for very specific jargon
 you might add a disclaimer if appropriate
 but the primary goal is the best possible technical translation. Strive for a natural-sounding translation in the target language
 as if written by a native technical expert.
							
Table des matières
    Aggiungere un'intestazione per iniziare a generare l'indice.

    DÉFI DE CONCEPTION ou DE PROJET ?
    Ingénieur mécanique, chef de projet ou de R&D
    Développement de produits efficace

    Disponible pour un nouveau défi à court terme en France et en Suisse.
    Contactez-moi sur LinkedIn
    Produits en plastique et en métal, Conception à coût réduit, Ergonomie, Volumes moyens à élevés, Secteurs réglementés, CE et FDA, CAO, Solidworks, Lean Sigma Black Belt, médical ISO 13485 Classes II et III

    Nous recherchons un nouveau sponsor

     

    Votre entreprise ou institution s'intéresse à la technique, à la science ou à la recherche ?
    > envoyez-nous un message <

    Recevez tous les nouveaux articles
    Gratuit, pas de spam, email non distribué ni revendu

    ou vous pouvez obtenir votre adhésion complète - gratuitement - pour accéder à tout le contenu restreint >ici<

    Sujets abordés : invites de test, validation, saisie par l'utilisateur, collecte de données, mécanisme de retour d'information, tests interactifs, conception d'enquêtes, tests d'utilisabilité, évaluation de logiciels, conception expérimentale, évaluation des performances, questionnaire, ISO 9241, ISO 25010, ISO 20282, ISO 13407, et ISO 26362.

    1. Wynter

      Sommes-nous en train de supposer que l'IA peut toujours générer les meilleurs messages en génie mécanique ? Comment sont-elles générées ?

    2. Giselle

      L'IA va-t-elle rendre les ingénieurs humains superflus ?

    Laisser un commentaire

    Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

    Articles Similaires

    Retour en haut

    Vous aimerez peut-être aussi