Quantum statistics modifies classical statistical mechanics to account for the indistinguishability of identical particles. It splits into two types: Fermi-Dirac statistics for fermions (half-integer spin particles like electrons), which obey the Pauli exclusion principle, and Bose-Einstein statistics for bosons (integer spin particles like photons), which can occupy the same quantum state. This distinction is crucial at low temperatures and high densities.
Quantum Statistics
- Satyendra Nath Bose
- Albert Einstein
- Enrico Fermi
- Paul Dirac
Classical Maxwell-Boltzmann statistics assumes that particles in a system are distinguishable, meaning one could, in principle, label and track each one. However, quantum mecánica revealed that identical particles are fundamentally indistinguishable. This leads to profound changes in how microstates are counted. For bosons, multiple particles can occupy a single energy state, leading to an enhanced probability of collective behavior. The average occupation number of a state with energy [latex]\epsilon_i[/latex] is given by the Bose-Einstein distribution: [latex]\langle n_i \rangle_{BE} = \frac{1}{e^{(\epsilon_i – \mu)/k_B T} – 1}[/latex]. This can lead to a macroscopic number of particles collapsing into the ground state at low temperatures, forming a Bose-Einstein condensate.
For fermions, the Pauli exclusion principle forbids any two identical particles from occupying the same quantum state. This ‘repulsive’ statistical effect gives rise to the structure of atoms and the stability of matter. The average occupation number is given by the Fermi-Dirac distribution: [latex]\langle n_i \rangle_{FD} = \frac{1}{e^{(\epsilon_i – \mu)/k_B T} + 1}[/latex]. This function is always less than or equal to 1. At absolute zero, fermions fill up all available energy levels up to a maximum energy called the Fermi energy. This creates a ‘Fermi sea’ and is responsible for the pressure that supports white dwarf stars against gravitational collapse. At high temperatures, both quantum distributions converge to the classical Maxwell-Boltzmann distribution.
Tipo
Disruption
Utilización
Precursors
- Planck’s law of black-body radiation, which implicitly treated photons as bosons
- The Pauli exclusion principle, which is the foundation of Fermi-Dirac statistics
- De Broglie’s hypothesis of wave-particle duality
- Classical Maxwell-Boltzmann statistical mechanics
Aplicaciones
- semiconductor physics and the operation of transistors
- superconductivity and superfluidity
- the theory of white dwarf and neutron stars
- the operation of lasers (based on properties of bosons)
- bose-einstein condensates
Patentes:
Potential Innovations Ideas
Membresía obligatoria de Professionals (100% free)
Debes ser miembro de Professionals (100% free) para acceder a este contenido.
DISPONIBLE PARA NUEVOS RETOS
Ingeniero Mecánico, Gerente de Proyectos o de I+D
Disponible para un nuevo desafío a corto plazo.
Contáctame en LinkedIn
Integración de electrónica de plástico y metal, diseño a coste, GMP, ergonomía, dispositivos y consumibles de volumen medio a alto, industrias reguladas, CE y FDA, CAD, Solidworks, cinturón negro Lean Sigma, ISO 13485 médico
Estamos buscando un nuevo patrocinador
¿Su empresa o institución se dedica a la técnica, la ciencia o la investigación?
> Envíanos un mensaje <
Recibe todos los artículos nuevos
Gratuito, sin spam, correo electrónico no distribuido ni revendido.
o puedes obtener tu membresía completa -gratis- para acceder a todo el contenido restringido >aquí<
Historical Context
Quantum Statistics
(if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)
Related Invention, Innovation & Technical Principles