Hogar » Constitutive Equations

Constitutive Equations

A constitutive equation, or constitutive relation, is a mathematical relationship that describes how a specific material responds to external stimuli. In continuum mechanics, it connects cinemática quantities like strain to kinetic quantities like stress. For example, Hooke’s Law, [latex]\boldsymbol{\sigma} = \mathbf{C} : \boldsymbol{\varepsilon}[/latex], is a constitutive equation for linear elastic solids, relating the stress tensor [latex]\boldsymbol{\sigma}[/latex] to the strain tensor [latex]\boldsymbol{\varepsilon}[/latex].

Constitutive equations are essential because the fundamental laws of continuum mecánica (conservation of mass, momentum, and energy) are universal and apply to all materials. However, different materials behave differently under the same loading conditions. A steel beam, a column of water, and a piece of rubber will all respond uniquely to an applied force. Constitutive equations provide the material-specific information needed to close the system of governing equations and obtain a unique solution for a given problem. They are determined experimentally and represent a mathematical model of a material’s behavior.

The complexity of constitutive equations varies greatly. The simplest models are for linear, isotropic materials. For a linear elastic solid, Hooke’s Law relates stress and strain linearly via a fourth-order stiffness tensor [latex]\mathbf{C}[/latex]. For a Newtonian fluid, the stress is linearly related to the rate of strain. However, many real-world materials exhibit much more complex behavior. Non-linear elasticity is needed for materials like rubber that undergo large deformations. Plasticity models describe permanent deformation after a yield stress is exceeded. Viscoelastic models, used for polymers, exhibit both fluid-like and solid-like characteristics, with their response depending on the rate of loading. Developing accurate constitutive models for advanced materials like composites, biological tissues, or granular materials is a major and ongoing area of research in mechanics.

UNESCO Nomenclature: 2210
– Mechanics

Tipo

Abstract System

Disruption

Substantial

Utilización

Widespread Use

Precursors

  • Robert Hooke’s experiments on springs (‘ut tensio, sic vis’)
  • Isaac Newton’s concept of viscosity in fluids
  • The development of the mathematical concepts of stress and strain
  • Experimental testing of material properties

Aplicaciones

  • material selection in engineering design based on stress-strain behavior
  • simulation of non-newtonian fluids like ketchup or blood in cfd
  • modeling plasticity and permanent deformation in metal forming processes
  • geotechnical engineering for describing the behavior of soil and rock under load

Patentes:

ESO

Potential Innovations Ideas

Membresía obligatoria de Professionals (100% free)

Debes ser miembro de Professionals (100% free) para acceder a este contenido.

Únete ahora

¿Ya eres miembro? Accede aquí
Related to: constitutive equation, material model, stress-strain relationship, Hooke’s law, Newtonian fluid, viscoelasticity, plasticity, material properties

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

DISPONIBLE PARA NUEVOS RETOS
Ingeniero Mecánico, Gerente de Proyectos o de I+D
Desarrollo eficaz de productos

Disponible para un nuevo desafío a corto plazo.
Contáctame en LinkedIn
Integración de electrónica de plástico y metal, diseño a coste, GMP, ergonomía, dispositivos y consumibles de volumen medio a alto, industrias reguladas, CE y FDA, CAD, Solidworks, cinturón negro Lean Sigma, ISO 13485 médico

Estamos buscando un nuevo patrocinador

 

¿Su empresa o institución se dedica a la técnica, la ciencia o la investigación?
> Envíanos un mensaje <

Recibe todos los artículos nuevos
Gratuito, sin spam, correo electrónico no distribuido ni revendido.

o puedes obtener tu membresía completa -gratis- para acceder a todo el contenido restringido >aquí<

Related Invention, Innovation & Technical Principles

Scroll al inicio

También te puede interesar