بيت » Maxwell-Faraday Equation

Maxwell-Faraday Equation

1861
  • Michael Faraday
  • James Clerk Maxwell

This is the differential form of Faraday’s law of induction, one of Maxwell’s four equations. It states that a time-varying magnetic field ([latex]\mathbf{B}[/latex]) always accompanies a spatially varying, non-conservative electric field ([latex]\mathbf{E}[/latex]). The relationship is expressed as [latex]\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}[/latex]. This equation governs how changing magnetic fields create electric fields at a specific point in space.

The Maxwell-Faraday equation is a fundamental law of electromagnetism that describes how a changing magnetic field generates an electric field. In its differential form, [latex]\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}[/latex], it provides a localized, microscopic description of this phenomenon. Here, [latex]\nabla \times[/latex] is the curl operator, which measures the rotational tendency of a vector field. [latex]\mathbf{E}[/latex] represents the electric field, and [latex]\mathbf{B}[/latex] is the magnetic field. The term [latex]\frac{\partial \mathbf{B}}{\partial t}[/latex] is the partial derivative of the magnetic field with respect to time, signifying its rate of change at a specific point in space.

A key implication of this equation is that the induced electric field is non-conservative. A conservative vector field has a curl of zero, meaning the line integral around any closed loop is zero. Since the curl of [latex]\mathbf{E}[/latex] is non-zero in the presence of a changing magnetic field, the work done by this electric field on a charge moving in a closed loop is not zero. This non-zero work per unit charge is precisely the electromotive force (EMF) that drives current in a conductor.

This equation was James Clerk Maxwell’s generalization of Michael Faraday’s experimental findings from 1831. Faraday observed that changing magnetic flux through a circuit induced a current, but he described it in terms of flux and EMF. Maxwell reformulated this observation into a local field equation, making it a cornerstone of his unified theory of electromagnetism. It elegantly connects electricity and magnetism, showing they are not separate phenomena but two facets of a single electromagnetic field. This formulation is crucial for deriving the wave equation for electromagnetic radiation, predicting the existence of light waves, radio waves, and other forms of electromagnetic energy propagating through space.

UNESCO Nomenclature: 2205
– Electromagnetism

النوع

Physical Law

Disruption

Foundational

الاستخدام

Widespread Use

Precursors

  • Hans Christian Ørsted’s discovery of the magnetic effect of electric current (1820)
  • André-Marie Ampère’s formulation of the law governing forces between currents
  • Michael Faraday’s experimental discovery of electromagnetic induction (1831)
  • The development of vector calculus

التطبيقات

  • electric generators
  • induction motors
  • transformers
  • wireless power transfer
  • induction cooking
  • magnetic recording heads
  • particle accelerators

براءات الاختراع:

NA

Potential Innovations Ideas

!!مستويات !!! العضوية مطلوبة

يجب أن تكون عضوًا !!! مستويات!!! للوصول إلى هذا المحتوى.

انضم الآن

هل أنت عضو بالفعل؟ سجّل الدخول هنا
Related to: maxwell-faraday equation, differential form, curl, electric field, magnetic field, electromagnetism, induction, maxwell’s equations

اترك تعليقاً

لن يتم نشر عنوان بريدك الإلكتروني. الحقول الإلزامية مشار إليها بـ *

متاح للتحديات الجديدة
Mechanical Engineer, Project, Process Engineering or R&D Manager
تطوير المنتج الفعال

متاح لتحدي جديد في غضون مهلة قصيرة.
تواصل معي على LinkedIn
Plastic metal electronics integration, Design-to-cost, GMP, Ergonomics, Medium to high-volume devices & consumables, Lean Manufacturing, Regulated industries, CE & FDA, CAD, Solidworks, Lean Sigma Black Belt, medical ISO 13485

نحن نبحث عن راعي جديد

 

هل شركتك أو مؤسستك متخصصة في التقنية أو العلوم أو الأبحاث؟
> أرسل لنا رسالة <

احصل على جميع المقالات الجديدة
مجاني، لا يوجد بريد عشوائي، ولا يتم توزيع البريد الإلكتروني ولا إعادة بيعه

أو يمكنك الحصول على عضويتك الكاملة -مجانًا- للوصول إلى جميع المحتويات المحظورة >هنا<

Historical Context

(if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)

Related Invention, Innovation & Technical Principles

انتقل إلى الأعلى

قد يعجبك أيضاً