A differentiable manifold is a topological space that is locally similar to Euclidean space, allowing calculus to be applied. Each point has a neighborhood that is homeomorphic to an open subset of [latex]\mathbb{R}^n[/latex]. These local coordinate systems, called charts, are related by smooth transition functions, forming an atlas that defines the manifold’s differentiable structure.
Differentiable Manifolds (geom)
- Bernhard Riemann
A differentiable manifold is the central object of study in differential geometry. The concept formalizes the idea of a “curved space” of any dimension. While globally a manifold can be complex (like a sphere or a torus), locally, around any point, it looks like a flat piece of Euclidean space. This local “flatness” is key, as it allows us to use the tools of multivariable calculus.
The formal definition involves a set of points M, a topology on M, and an atlas. An atlas is a collection of charts, where each chart is a pair (U, φ), with U being an open subset of M and φ being a homeomorphism from U to an open subset of [latex]\mathbb{R}^n[/latex]. For any two overlapping charts, (U, φ) and (V, ψ), the transition map [latex]\psi \circ \phi^{-1}[/latex] from [latex]\phi(U \cap V)[/latex] to [latex]\psi(U \cap V)[/latex] must be a diffeomorphism (infinitely differentiable with a differentiable inverse). This compatibility condition ensures that calculus performed in one coordinate system is consistent with calculus performed in another.
This structure allows for the definition of tangent spaces, vector fields, and differential forms on the manifold, independent of any particular coordinate system. It provides a نطاق for studying geometry intrinsically, without needing to embed the space in a higher-dimensional ambient space.
النوع
Disruption
الاستخدام
Precursors
- Euclidean geometry
- Non-Euclidean geometries (Lobachevsky, Bolyai)
- Theory of surfaces by Carl Friedrich Gauss
- Coordinate systems by René Descartes
- Early concepts of topology
التطبيقات
- general relativity (spacetime is modeled as a 4d lorentzian manifold)
- الروبوتات (configuration spaces of robots are manifolds)
- computer graphics (representing complex surfaces)
- string theory
- classical الميكانيكا (phase space is a symplectic manifold)
براءات الاختراع:
Potential Innovations Ideas
!!مستويات !!! العضوية مطلوبة
يجب أن تكون عضوًا !!! مستويات!!! للوصول إلى هذا المحتوى.
متاح للتحديات الجديدة
مهندس ميكانيكي، مدير مشروع أو بحث وتطوير
متاح لتحدي جديد في غضون مهلة قصيرة.
تواصل معي على LinkedIn
تكامل الإلكترونيات المعدنية والبلاستيكية، التصميم حسب التكلفة، ممارسات التصنيع الجيدة (GMP)، بيئة العمل، الأجهزة والمواد الاستهلاكية متوسطة إلى عالية الحجم، الصناعات الخاضعة للتنظيم، شهادات CE وFDA، التصميم بمساعدة الحاسوب (CAD)، Solidworks، الحزام الأسود Lean Sigma، شهادة ISO 13485 الطبية
احصل على جميع المقالات الجديدة
مجاني، لا يوجد بريد عشوائي، ولا يتم توزيع البريد الإلكتروني ولا إعادة بيعه
أو يمكنك الحصول على عضويتك الكاملة -مجانًا- للوصول إلى جميع المحتويات المحظورة >هنا<
Historical Context
Differentiable Manifolds (geom)
(if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)
Related Invention, Innovation & Technical Principles