بيت » Hollomon Equation for Strain Hardening

Hollomon Equation for Strain Hardening

1945-01-01
  • John H. Hollomon, Jr.

The Hollomon equation is an empirical power-law relationship that describes the portion of the true stress-true strain curve between the onset of plastic deformation (yielding) and the onset of necking (UTS). The equation is [latex]\sigma_t = K \epsilon_t^n[/latex], where [latex]\sigma_t[/latex] is the true stress, [latex]\epsilon_t[/latex] is the true plastic strain, K is the strength coefficient, and n is the strain-hardening exponent.

The Hollomon equation provides a simple yet effective mathematical model for the phenomenon of strain hardening (or work hardening), where a ductile material becomes stronger and harder as it is plastically deformed. The strain-hardening exponent, ‘n’, is a key material property derived from this equation. It typically ranges from 0 (for a perfectly plastic solid) to 1. A higher ‘n’ value indicates a greater capacity for strain hardening. For many metals, ‘n’ is numerically equal to the true strain at the point of ultimate tensile strength. The strength coefficient, ‘K’, represents the true stress at a true strain of 1.0. This equation is valid only in the plastic region, after yielding and before necking begins. It is determined by plotting true stress versus true strain on a log-log scale; the data in the plastic region should form a straight line. The slope of this line is ‘n’, and the intercept at [latex]\epsilon_t = 1[/latex] is ‘K’. While it is an empirical model and doesn’t capture all complexities of plastic deformation (like the Bauschinger effect), its simplicity and utility have made it a standard tool in materials science and mechanical engineering for analyzing and predicting the response of metals to plastic deformation.

UNESCO Nomenclature: 3313
- علم المواد

النوع

Mathematical Model

الاضطراب

كبير

الاستخدام

الاستخدام الواسع النطاق

السلائف

  • concepts of true stress and true strain
  • experimental observation of work hardening in metals
  • development of logarithmic plotting techniques for data analysis
  • need for predictive models in metal forming industries

التطبيقات

  • العنصر المحدود analysis (FEA) for modeling plastic deformation
  • predicting material behavior in metal forming operations like deep drawing and stamping
  • characterizing the work-hardening capacity of metals
  • material model development for crash simulations
  • assessing the formability of sheet metals

براءات الاختراع:

NA

أفكار ابتكارات محتملة

!!مستويات !!! العضوية مطلوبة

يجب أن تكون عضوًا !!! مستويات!!! للوصول إلى هذا المحتوى.

انضم الآن

هل أنت عضو بالفعل؟ سجّل الدخول هنا
Related to: Hollomon equation, strain hardening, work hardening, true stress, true strain, plastic deformation, strength coefficient, strain-hardening exponent, metal forming, constitutive model.

اترك تعليقاً

لن يتم نشر عنوان بريدك الإلكتروني. الحقول الإلزامية مشار إليها بـ *

متاح للتحديات الجديدة
مهندس ميكانيكي، مشروع، هندسة العمليات أو مدير البحث والتطوير
تطوير المنتج الفعال

متاح لتحدي جديد في غضون مهلة قصيرة.
تواصل معي على LinkedIn
تكامل الإلكترونيات المعدنية والبلاستيكية، التصميم مقابل التكلفة، ممارسات التصنيع الجيدة (GMP)، بيئة العمل، الأجهزة والمواد الاستهلاكية متوسطة إلى عالية الحجم، التصنيع المرن، الصناعات الخاضعة للتنظيم، شهادات CE وFDA، التصميم بمساعدة الحاسوب (CAD)، Solidworks، الحزام الأسود من Lean Sigma، شهادة ISO 13485 الطبية

نحن نبحث عن راعي جديد

 

هل شركتك أو مؤسستك متخصصة في التقنية أو العلوم أو الأبحاث؟
> أرسل لنا رسالة <

احصل على جميع المقالات الجديدة
مجاني، لا يوجد بريد عشوائي، ولا يتم توزيع البريد الإلكتروني ولا إعادة بيعه

أو يمكنك الحصول على عضويتك الكاملة -مجانًا- للوصول إلى جميع المحتويات المحظورة >هنا<

الاختراع والابتكار والمبادئ التقنية ذات الصلة

Scroll to Top

قد يعجبك أيضاً