» 雷诺平均纳维-斯托克斯 (RANS) 方程

雷诺平均纳维-斯托克斯 (RANS) 方程

1895
  • Osborne Reynolds
使用雷诺平均纳维-斯托克斯方程进行流体力学分析的 19 世纪实验室。

The Reynolds-Averaged Navier-Stokes (RANS) equations are time-averaged equations of motion for turbulent fluid flow. This approach, called 雷诺兹 decomposition, separates flow variables into a mean and a fluctuating component. The averaging process introduces an additional term, the Reynolds 强调 tensor, which represents the effect of turbulence and must be modeled to achieve closure, making simulations computationally tractable.

The core idea behind RANS is Reynolds decomposition, where an instantaneous quantity is split into its time-averaged and fluctuating parts. For velocity, this is [latex]u_i(x,t) = \bar{u}_i(x) + u’_i(x,t)[/latex]. When this is substituted into the Navier-Stokes equations and the equations are time-averaged, the non-linear convective term generates a new term, [latex] -\rho \overline{u’_i u’_j} [/latex], known as the Reynolds stress tensor. This tensor represents the net transfer of momentum due to turbulent fluctuations.

The appearance of this unknown tensor leads to the ‘closure problem’ of turbulence: there are more unknowns than equations. To solve the system, the Reynolds stresses must be related to the mean flow quantities through a turbulence model. The most common approach is the Boussinesq hypothesis, which assumes the Reynolds stresses are proportional to the mean strain rate, introducing an ‘eddy viscosity’ or ‘turbulent viscosity’. This is analogous to how molecular 粘度 relates stress to strain rate in laminar flow. Turbulence models, such as the popular k-ε (k-epsilon) and k-ω (k-omega) models, are sets of additional transport equations used to compute this eddy viscosity throughout the flow field. For example, the k-ε model solves for the turbulent kinetic energy (k) and its rate of dissipation (ε). RANS provides a good balance of accuracy and computational cost for many engineering applications, as it avoids the prohibitive expense of resolving all turbulent eddies directly.

UNESCO Nomenclature: 2205
– Fluid Mechanics

类型

抽象系统

中断

基础

使用方法

广泛使用

前体

  • 纳维-斯托克斯方程
  • Osborne Reynolds’ experiments on flow transition from laminar to turbulent
  • 统计力学和时间平均概念
  • Joseph Boussinesq’s eddy viscosity hypothesis

应用

  • 商用飞机机翼和机身的设计
  • 喷气发动机和涡轮机等涡轮机械的分析
  • 船体流体动力学设计
  • 内燃机的流动建模
  • 土木工程应用,例如建筑物的风荷载
  • 用于分析运动员和装备的空气动力学的运动科学

专利:

NA

潜在的创新想法

级别需要会员

您必须是!!等级!!会员才能访问此内容。

立即加入

已经是会员? 在此登录
Related to: rans, turbulence modeling, reynolds stress, closure problem, k-epsilon, k-omega, cfd, eddy viscosity.

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

迎接新挑战
机械工程师、项目、工艺工程师或研发经理
有效的产品开发

可在短时间内接受新的挑战。
通过 LinkedIn 联系我
塑料金属电子集成、成本设计、GMP、人体工程学、中高容量设备和耗材、精益制造、受监管行业、CE 和 FDA、CAD、Solidworks、精益西格玛黑带、医疗 ISO 13485

我们正在寻找新的赞助商

 

您的公司或机构从事技术、科学或研究吗?
> 给我们发送消息 <

接收所有新文章
免费,无垃圾邮件,电子邮件不分发也不转售

或者您可以免费获得完整会员资格以访问所有受限制的内容>这里<

历史背景

(如果日期不详或不相关,例如 "流体力学",则对其显著出现的时间作了四舍五入的估计)。

相关发明、创新和技术原理

滚动至顶部

你可能还喜欢