» Method of Ordinary Least Squares (OLS)

Method of Ordinary Least Squares (OLS)

1805
  • Adrien-Marie Legendre
  • Carl Friedrich Gauss
Historical office scene depicting the Method of Ordinary Least Squares in mathematical statistics.

A standard approach for approximating solutions to overdetermined systems by finding model parameters that minimize the sum of the squared differences between observed and predicted values. This sum is known as the sum of squared residuals (SSR). The goal is to find the parameters [latex]\hat{\beta}[/latex] that minimize the function [latex]S(\beta) = \sum_{i=1}^{n} (y_i – x_i^T \beta)^2[/latex].

方法 of ordinary least squares is a cornerstone of regression analysis. It provides a direct way to estimate the unknown parameters in a linear model. The principle is to find the line (or hyperplane in multiple regression) that is closest to all the data points simultaneously. ‘Closest’ is defined in terms of minimizing the vertical distances from each point to the line, specifically, the sum of the squares of these distances (residuals).

This minimization problem can be solved using calculus. By taking the derivative of the sum of squared residuals function [latex]S(\beta)[/latex] with respect to the parameter vector [latex]\beta[/latex] and setting it to zero, we derive a set of equations known as the ‘normal equations’. In matrix form, these are expressed as [latex]X^T X \hat{\beta} = X^T y[/latex], where [latex]X[/latex] is the matrix of independent variables and [latex]y[/latex] is the vector of the dependent variable.

The solution for the estimated coefficient vector is then given by [latex]\hat{\beta} = (X^T X)^{-1} X^T y[/latex]. This closed-form solution is computationally efficient and provides a unique estimate, provided that the matrix [latex]X^T X[/latex] is invertible (i.e., there is no perfect multicollinearity among the independent variables). Geometrically, the OLS solution corresponds to an orthogonal projection of the outcome vector [latex]y[/latex] onto the vector subspace spanned by the columns of the predictor matrix [latex]X[/latex]. While powerful, OLS is sensitive to outliers, as squaring the residuals gives large errors a disproportionately large influence on the final fit.

UNESCO Nomenclature: 1209
- 统计资料

类型

软件/算法

中断

实质性

使用方法

广泛使用

前体

  • Linear algebra (matrix operations)
  • Differential calculus (for finding minima)
  • Theory of errors in observation (developed by astronomers)
  • Analytic geometry (Descartes)

应用

  • parameter estimation in linear regression models
  • 信号处理 and digital filtering
  • control theory for system identification
  • econometrics for modeling economic relationships
  • astronomical calculations of orbits

专利:

NA

潜在的创新想法

级别需要会员

您必须是!!等级!!会员才能访问此内容。

立即加入

已经是会员? 在此登录
Related to: least squares, OLS, parameter estimation, sum of squared residuals, optimization, normal equations, linear algebra, regression analysis, curve fitting, data fitting.

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

迎接新挑战
机械工程师、项目、工艺工程师或研发经理
有效的产品开发

可在短时间内接受新的挑战。
通过 LinkedIn 联系我
塑料金属电子集成、成本设计、GMP、人体工程学、中高容量设备和耗材、精益制造、受监管行业、CE 和 FDA、CAD、Solidworks、精益西格玛黑带、医疗 ISO 13485

我们正在寻找新的赞助商

 

您的公司或机构从事技术、科学或研究吗?
> 给我们发送消息 <

接收所有新文章
免费,无垃圾邮件,电子邮件不分发也不转售

或者您可以免费获得完整会员资格以访问所有受限制的内容>这里<

历史背景

(如果日期不详或不相关,例如 "流体力学",则对其显著出现的时间作了四舍五入的估计)。

相关发明、创新和技术原理

滚动至顶部

你可能还喜欢