» 理想气体定律(统计形式)

理想气体定律(统计形式)

1850
  • Ludwig Boltzmann
19th-century laboratory scene with Ludwig Boltzmann studying the Ideal Gas Law in statistical thermodynamics.

The statistical 力学 formulation of the ideal gas law expresses the relationship in terms of the microscopic properties of the gas. It relates 压力 ([latex]P[/latex]) and volume ([latex]V[/latex]) to the total number of particles ([latex]N[/latex]) and the absolute temperature ([latex]T[/latex]) through the Boltzmann constant ([latex]k_B[/latex]): [latex]PV = Nk_BT[/latex].

While the molar form of the ideal gas law ([latex]PV = nRT[/latex]) is convenient for chemistry and macroscopic thermodynamics, the statistical form ([latex]PV = Nk_BT[/latex]) provides a direct link to the microscopic world of atoms and molecules. In this equation, [latex]N[/latex] is the total number of particles (atoms or molecules) in the gas, and [latex]k_B[/latex] is the Boltzmann constant, a fundamental constant in physics named after Ludwig Boltzmann. The Boltzmann constant acts as a bridge between the macroscopic energy scale (related to temperature [latex]T[/latex]) and the microscopic energy scale of individual particles. Its value is approximately [latex]1.38 \times 10^{-23}[/latex] J/K.

This form of the law arises directly from the principles of statistical mechanics and the kinetic theory of gases. It highlights that the macroscopic pressure of a gas is a direct consequence of the collective motion of its constituent particles. The two forms of the ideal gas law are equivalent, connected by the relationship between the universal gas constant ([latex]R[/latex]), the Boltzmann constant ([latex]k_B[/latex]), and Avogadro’s number ([latex]N_A[/latex]), which is the number of particles per mole: [latex]R = N_A k_B[/latex]. The statistical form is preferred in fields like condensed matter physics, plasma physics, and astrophysics, where it is more natural to consider the number of individual particles rather than the number of moles.

UNESCO Nomenclature: 2210
- 热力学

类型

抽象系统

中断

基础

使用方法

广泛使用

前体

  • 理想气体定律(摩尔形式)
  • 气体动力学理论(克劳修斯、麦克斯韦)
  • 物理学统计方法的发展
  • Avogadro’s hypothesis

应用

  • 统计力学建模
  • 分子动力学模拟
  • connecting macroscopic 热力学 properties to microscopic particle behavior
  • 等离子体物理学
  • 天体物理学(模拟恒星大气)

专利:

NA

潜在的创新想法

级别需要会员

您必须是!!等级!!会员才能访问此内容。

立即加入

已经是会员? 在此登录
Related to: statistical mechanics, Boltzmann constant, kinetic theory of gases, ideal gas, pressure, volume, temperature, Ludwig Boltzmann, microscopic properties, particle number.

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

迎接新挑战
机械工程师、项目、工艺工程师或研发经理
有效的产品开发

可在短时间内接受新的挑战。
通过 LinkedIn 联系我
塑料金属电子集成、成本设计、GMP、人体工程学、中高容量设备和耗材、精益制造、受监管行业、CE 和 FDA、CAD、Solidworks、精益西格玛黑带、医疗 ISO 13485

我们正在寻找新的赞助商

 

您的公司或机构从事技术、科学或研究吗?
> 给我们发送消息 <

接收所有新文章
免费,无垃圾邮件,电子邮件不分发也不转售

或者您可以免费获得完整会员资格以访问所有受限制的内容>这里<

历史背景

(如果日期不详或不相关,例如 "流体力学",则对其显著出现的时间作了四舍五入的估计)。

相关发明、创新和技术原理

滚动至顶部

你可能还喜欢