» Gravitational Lensing

Gravitational Lensing

1919-05-29
  • Albert Einstein

General relativity predicts that the path of light is bent by gravity. When light from a distant source passes a massive object like a galaxy or a star, its path is deflected. This phenomenon, known as gravitational lensing, can magnify, distort, or create multiple images of the background source, acting like a cosmic telescope for observing the distant universe.

Gravitational lensing is a direct consequence of spacetime curvature. A massive object warps the spacetime around it, and light follows the straightest possible path—a geodesic—through this curved spacetime. From our perspective, this path appears bent. The degree of bending depends on the mass of the lensing object and the light’s proximity to it. There are three main classes of lensing. Strong lensing occurs with a massive object and precise alignment, producing multiple images, arcs, or a complete ‘Einstein ring’. Weak lensing involves subtle distortions of background galaxies’ shapes, which can be statistically analyzed to map mass distribution, including dark matter. Microlensing is a temporary brightening of a background star when a smaller object, like a planet, passes in front, briefly focusing its light. This is effective for finding objects that emit little or no light.

The first confirmation came in 1919 during a solar eclipse. Expeditions 引领 by Sir Arthur Eddington and Sir Frank Dyson observed starlight passing near the Sun and confirmed its position was shifted by the amount predicted by Einstein’s theory. This result catapulted Einstein to international fame. Today, gravitational lensing is a fundamental tool in astronomy and cosmology, allowing scientists to weigh galaxy clusters, probe the distant universe by magnifying faint objects, and discover celestial bodies that would otherwise be undetectable.

UNESCO Nomenclature: 2211
– Relativity

类型

Abstract System

Disruption

Substantial

使用方法

Widespread Use

Precursors

  • Newtonian prediction of light deflection (half the GR value)
  • Einstein’s theory of general relativity
  • Photography and astronomical observation techniques

应用

  • mapping the distribution of dark matter
  • detecting exoplanets through microlensing
  • observing extremely distant galaxies and quasars
  • measuring the hubble constant and the expansion rate of the universe
  • testing the predictions of general relativity

专利:

Potential Innovations Ideas

级别需要会员

您必须是!!等级!!会员才能访问此内容。

立即加入

已经是会员? 在此登录
Related to: gravitational lensing, general relativity, dark matter, spacetime, light deflection, einstein ring, microlensing, cosmology

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

迎接新挑战
机械工程师、项目或研发经理
有效的产品开发

可在短时间内接受新的挑战。
通过 LinkedIn 联系我
塑料金属电子集成、成本设计、GMP、人体工程学、中高容量设备和耗材、受监管行业、CE 和 FDA、CAD、Solidworks、精益西格玛黑带、医疗 ISO 13485

我们正在寻找新的赞助商

 

您的公司或机构从事技术、科学或研究吗?
> 给我们发送消息 <

接收所有新文章
免费,无垃圾邮件,电子邮件不分发也不转售

或者您可以免费获得完整会员资格以访问所有受限制的内容>这里<

Related Invention, Innovation & Technical Principles

滚动至顶部

你可能还喜欢