» Daniell Cell Operation

Daniell Cell Operation

1836
  • John Frederic Daniell

An improvement on the Voltaic pile, the Daniell cell consists of a copper electrode in a copper(II) sulfate solution and a zinc electrode in a zinc sulfate solution, separated by a porous barrier. This two-fluid design prevents hydrogen gas buildup (polarization) on the copper electrode, resulting in a much more stable and reliable voltage source for a longer duration.

The Daniell cell elegantly solved the primary issue of the Voltaic pile: polarization. In the Voltaic pile, hydrogen bubbles formed on the copper cathode, insulating it and stopping the current. The Daniell cell’s design physically separates the two half-reactions. It typically consists of a central zinc anode immersed in a zinc sulfate solution, which is contained within an unglazed earthenware pot. This porous pot is then placed inside a copper can that serves as the cell’s cathode, filled with a copper sulfate solution.

The porous barrier allows ions to pass through to maintain charge neutrality but prevents the solutions from mixing freely. At the anode, zinc is oxidized: [latex]Zn \rightarrow Zn^{2+} + 2e^-[/latex]. At the cathode, instead of hydrogen ions being reduced, copper ions from the copper sulfate solution are reduced and plate onto the copper electrode: [latex]Cu^{2+} + 2e^- \rightarrow Cu[/latex].

Because no gas is produced at the cathode, the polarization problem is eliminated. This results in a very stable and constant voltage of approximately 1.1 volts, which made the Daniell cell the first truly practical battery. Its reliability was crucial for the new electrical industries of the 19th century, particularly the telegraph, which required a consistent power source for long-distance 沟通.

UNESCO Nomenclature: 2203
– Electrochemistry

类型

Physical Device

Disruption

Substantial

使用方法

Obsolete

Precursors

  • Alessandro Volta’s Voltaic Pile, which highlighted the problem of polarization
  • Michael Faraday’s laws of electrolysis, which quantified electrochemical reactions
  • Improved understanding of ionic solutions and salts
  • Development of porous ceramics for use as separators

应用

  • power source for early telegraph networks
  • powering doorbells and early telephone systems
  • used as a laboratory voltage standard for calibration
  • electrotyping and electroplating industries

专利:

Potential Innovations Ideas

级别需要会员

您必须是!!等级!!会员才能访问此内容。

立即加入

已经是会员? 在此登录
Related to: Daniell cell, galvanic cell, electrochemistry, polarization, porous barrier, copper sulfate, zinc sulfate, voltage standard

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

迎接新挑战
Mechanical Engineer, Project, Process Engineering or R&D Manager
有效的产品开发

可在短时间内接受新的挑战。
通过 LinkedIn 联系我
Plastic metal electronics integration, Design-to-cost, GMP, Ergonomics, Medium to high-volume devices & consumables, Lean Manufacturing, Regulated industries, CE & FDA, CAD, Solidworks, Lean Sigma Black Belt, medical ISO 13485

我们正在寻找新的赞助商

 

您的公司或机构从事技术、科学或研究吗?
> 给我们发送消息 <

接收所有新文章
免费,无垃圾邮件,电子邮件不分发也不转售

或者您可以免费获得完整会员资格以访问所有受限制的内容>这里<

Historical Context

(if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)

Related Invention, Innovation & Technical Principles

滚动至顶部

你可能还喜欢