该定理指出,对于映射紧凑凸集到自身的任何连续函数 [latex]f[/latex],存在一个点 [latex]x_0[/latex],使得 [latex]f(x_0) = x_0[/latex]。这个点称为定点。非正式地讲,如果把一个国家的地图揉成一团,然后放在这个国家的边界内,那么地图上总会有至少一个点在其对应的现实世界位置的正上方。

(生成的图像仅供参考)
该定理指出,对于映射紧凑凸集到自身的任何连续函数 [latex]f[/latex],存在一个点 [latex]x_0[/latex],使得 [latex]f(x_0) = x_0[/latex]。这个点称为定点。非正式地讲,如果把一个国家的地图揉成一团,然后放在这个国家的边界内,那么地图上总会有至少一个点在其对应的现实世界位置的正上方。
The Brouwer fixed-point theorem is a cornerstone of fixed-point theory and has profound implications in many areas of mathematics. The theorem applies to any continuous function [latex]f: D^n \to D^n[/latex], where [latex]D^n[/latex] is the closed n-dimensional unit ball. The proof is non-constructive; it guarantees the existence of a fixed point but does not provide a method to find it. The proof for [latex]n=1[/latex] is a simple consequence of the Intermediate Value Theorem. For higher dimensions, the proof is more complex and typically relies on tools from algebraic topology, such as homology or the concept of the degree of a map. One common proof strategy uses a retraction argument. It assumes, for the sake of contradiction, that a continuous function [latex]f: D^n \to D^n[/latex] has no fixed point. One can then construct a continuous function (a retraction) [latex]r: D^n \to S^{n-1}[/latex] from the disk to its boundary sphere, which can be shown to be impossible. The theorem’s power lies in its generality; it requires only continuity of the function and compactness and convexity of the domain, making it applicable to a wide range of problems where one needs to prove the existence of a solution or equilibrium state.
迎接新挑战
机械工程师、项目、工艺工程师或研发经理
可在短时间内接受新的挑战。
通过 LinkedIn 联系我
塑料金属电子集成、成本设计、GMP、人体工程学、中高容量设备和耗材、精益制造、受监管行业、CE 和 FDA、CAD、Solidworks、精益西格玛黑带、医疗 ISO 13485
布劳威尔定点定理
(如果日期未知或不相关,例如“流体力学”,则提供其显著出现的近似估计)
相关发明、创新和技术原理
{{标题}}
{%,如果摘录 %}{{ 摘录 | truncatewords:55 }}
{% endif %}