An open-source cheminformatics toolkit written in C++ with Python bindings, widely used for drug discovery, materials science, and general chemical informatics.
RDKit

- Python
- IA et apprentissage automatique, Bioinformatique, Chimie, Matériels, Nanotechnologies
- Intelligence artificielle (IA), Chimie, Dynamique des fluides numérique (CFD), Machine Learning, Algorithmes de maintenance prédictive, Amélioration des processus, Gestion de la qualité
Caractéristiques :
- Molecular representation (SMILES,SMARTS,InChI),2D and 3D molecular operations,fingerprint generation (Morgan,MACCS,etc.),molecular descriptor calculation,substructure searching,similarity searching (Tanimoto,Dice),pharmacophore analysis,QSAR/QSPR modeling tools,machine learning integration,molecule depiction,reaction processing
Prix :
- Gratuit
- Comprehensive and powerful cheminformatics toolkit, widely adopted in industry and academia, good performance (C++ core), extensive documentation and community support, rich feature set for drug discovery and chemical analysis.
- Can have a learning curve for advanced features, Python API sometimes reflects C++ patterns, installation used to be tricky but has improved with Conda, some very specialized commercial tools might have more polished GUIs for specific tasks.
Idéal pour :
- Cheminformaticians, computational chemists, and data scientists working in drug discovery, chemical biology, and materials informatics for tasks involving molecular analysis, property prediction, and similarity searching.