Maison » Lagrangian and Eulerian Specifications (fluids)
Lagrangian and Eulerian Specifications (fluids)
1788
Joseph-Louis Lagrange
Leonhard Euler
These are two ways to describe motion in continuum mechanics:
the Lagrangian specification follows individual material particles, tracking their properties over time, like watching a specific car in traffic
the Eulerian specification focuses on fixed points in space, observing the properties (velocity, density) of whatever particles pass through those points, like a traffic camera observing a fixed intersection.
In the Lagrangian description, the motion of a continuum is described by tracking the path of each individual particle. The position of a particle [latex]\mathbf{X}[/latex] in the initial configuration (at time [latex]t_0[/latex]) is used as its label. Its position at a later time [latex]t[/latex] is given by a function [latex]\mathbf{x} = \boldsymbol{\chi}(\mathbf{X}, t)[/latex]. Physical properties like velocity and acceleration are then calculated by taking time derivatives of this function while keeping [latex]\mathbf{X}[/latex] constant. This approach is intuitive as it mirrors how we observe individual objects. It is the natural cadre for solid mécanique, where material points are tracked as the body deforms.
Conversely, the Eulerian description focuses on what happens at fixed locations in space. Instead of tracking particles, we define a field for each physical property as a function of position [latex]\mathbf{x}[/latex] and time [latex]t[/latex]. For example, the velocity field is given by [latex]\mathbf{v} = \mathbf{v}(\mathbf{x}, t)[/latex], which represents the velocity of whichever particle happens to be at point [latex]\mathbf{x}[/latex] at time [latex]t[/latex]. This perspective is generally more convenient for fluid dynamics. The acceleration of a fluid particle in the Eulerian frame is described by the material derivative, [latex]D\mathbf{v}/Dt = \partial \mathbf{v}/\partial t + (\mathbf{v} \cdot \nabla)\mathbf{v}[/latex], which includes both the local acceleration at a point and the convective acceleration due to the particle moving to a new location with a different velocity.
UNESCO Nomenclature: 2209
– Fluid dynamics
Type
Abstract System
Disruption
Foundational
Utilisation
Widespread Use
Precursors
Newtonian mechanics
Calculus of variations
Kinematics of rigid bodies
Euler’s earlier work on fluid motion
Applications
computational fluid dynamics (CFD) solvers often use an eulerian grid
solid mechanics and finite element analysis typically use a lagrangian description
weather forecasting models use an eulerian framework to describe atmospheric properties at fixed locations
particle tracking velocimetry (PTV) is a lagrangian measurement technique
Brevets :
QUE
Potential Innovations Ideas
!niveaux !!! Adhésion obligatoire
Vous devez être membre de l'association pour accéder à ce contenu.
DISPONIBLE POUR DE NOUVEAUX DÉFIS Ingénieur mécanique, chef de projet ou de R&D
Disponible pour un nouveau défi dans un court délai. Contactez-moi sur LinkedIn Intégration électronique métal-plastique, Conception à coût réduit, BPF, Ergonomie, Appareils et consommables de volume moyen à élevé, Secteurs réglementés, CE et FDA, CAO, Solidworks, Lean Sigma Black Belt, ISO 13485 médical
Nous recherchons un nouveau sponsor
Votre entreprise ou institution est dans le domaine de la technique, de la science ou de la recherche ? > envoyez-nous un message <
Recevez tous les nouveaux articles Gratuit, pas de spam, email non distribué ni revendu
ou vous pouvez obtenir votre adhésion complète - gratuitement - pour accéder à tout le contenu restreint >ici<
Related Invention, Innovation & Technical Principles