Maison » Homeomorphism

Homeomorphism

1895
  • Henri Poincaré

A homeomorphism is a continuous function between two topological spaces that has a continuous inverse function. Two topological spaces are called homeomorphic if such a function exists. From a topological viewpoint, homeomorphic spaces are identical. This concept captures the idea that an object can be stretched, bent, or deformed into another without tearing or gluing, like a coffee mug into a donut.

More formally, a function [latex]f: X \to Y[/latex] between two topological spaces [latex](X, \tau_X)[/latex] and [latex](Y, \tau_Y)[/latex] is a homeomorphism if it is a bijection, it is continuous, and its inverse [latex]f^{-1}: Y \to X[/latex] is also continuous. The condition that the inverse must also be continuous is crucial. For example, the function [latex]f: [0, 2\pi) \to S^1[/latex] defined by [latex]f(t) = (\cos(t), \sin(t))[/latex] is a continuous bijection from a half-open interval to a circle, but its inverse is not continuous at the point (1,0), so it is not a homeomorphism. Homeomorphism is an equivalence relation on the class of all topological spaces. The resulting equivalence classes are called homeomorphism classes. The central problem in topology is to determine whether two given topological spaces are homeomorphic. To do this, topologists find topological invariants—properties of spaces that are preserved under homeomorphisms. If two spaces do not share an invariant, they cannot be homeomorphic. Examples of topological invariants include connectedness, compactness, and the fundamental group.

UNESCO Nomenclature: 1209
– Topology

Type

Abstract System

Disruption

Foundational

Utilisation

Widespread Use

Precursors

  • Leonhard Euler’s work on graph theory and polyhedra
  • August Ferdinand Möbius’s discovery of the Möbius strip
  • Felix Klein’s Erlangen program
  • The development of continuous functions by Cauchy and Weierstrass

Applications

  • classification of geometric objects
  • knot theory
  • topological data analysis
  • computer graphics and 3d modeling
  • robotics and motion planning

Brevets :

QUE

Potential Innovations Ideas

!niveaux !!! Adhésion obligatoire

Vous devez être membre de l'association pour accéder à ce contenu.

S’inscrire maintenant

Vous êtes déjà membre ? Connectez-vous ici
Related to: homeomorphism, continuous deformation, topological equivalence, donut, coffee mug, topological invariant, bijection, continuous function

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

DISPONIBLE POUR DE NOUVEAUX DÉFIS
Ingénieur mécanique, chef de projet ou de R&D
Développement de produits efficace

Disponible pour un nouveau défi dans un court délai.
Contactez-moi sur LinkedIn
Intégration électronique métal-plastique, Conception à coût réduit, BPF, Ergonomie, Appareils et consommables de volume moyen à élevé, Secteurs réglementés, CE et FDA, CAO, Solidworks, Lean Sigma Black Belt, ISO 13485 médical

Nous recherchons un nouveau sponsor

 

Votre entreprise ou institution est dans le domaine de la technique, de la science ou de la recherche ?
> envoyez-nous un message <

Recevez tous les nouveaux articles
Gratuit, pas de spam, email non distribué ni revendu

ou vous pouvez obtenir votre adhésion complète - gratuitement - pour accéder à tout le contenu restreint >ici<

Historical Context

(if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)

Related Invention, Innovation & Technical Principles

Retour en haut

Vous aimerez peut-être aussi