Hogar » Brouwer Fixed-Point Theorem

Brouwer Fixed-Point Theorem

1911
  • L. E. J. Brouwer

This theorem states that for any continuous function [latex]f[/latex] mapping a compact convex set to itself, there is a point [latex]x_0[/latex] such that [latex]f(x_0) = x_0[/latex]. This point is called a fixed point. Informally, if you take a map of a country, crumple it up, and place it inside the country’s borders, there will always be at least one point on the map directly above its corresponding real-world location.

The Brouwer fixed-point theorem is a cornerstone of fixed-point theory and has profound implications in many areas of mathematics. The theorem applies to any continuous function [latex]f: D^n \to D^n[/latex], where [latex]D^n[/latex] is the closed n-dimensional unit ball. The proof is non-constructive; it guarantees the existence of a fixed point but does not provide a método to find it. The proof for [latex]n=1[/latex] is a simple consequence of the Intermediate Value Theorem. For higher dimensions, the proof is more complex and typically relies on tools from algebraic topology, such as homology or the concept of the degree of a map. One common proof strategy uses a retraction argument. It assumes, for the sake of contradiction, that a continuous function [latex]f: D^n \to D^n[/latex] has no fixed point. One can then construct a continuous function (a retraction) [latex]r: D^n \to S^{n-1}[/latex] from the disk to its boundary sphere, which can be shown to be impossible. The theorem’s power lies in its generality; it requires only continuity of the function and compactness and convexity of the domain, making it applicable to a wide range of problems where one needs to prove the existence of a solution or equilibrium state.

UNESCO Nomenclature: 1209
– Topology

Tipo

Abstract System

Disruption

Substantial

Utilización

Widespread Use

Precursors

  • Intermediate Value Theorem by Bolzano and Cauchy
  • Work on existence theorems by Poincaré and Bohl
  • Development of algebraic topology by Henri Poincaré
  • Jacques Hadamard’s work on related problems

Aplicaciones

  • game theory (proving the existence of Nash equilibria)
  • economics (general equilibrium theory)
  • computer graphics (calculating object transformations)
  • numerical analysis (finding roots of equations)
  • control theory

Patentes:

ESO

Potential Innovations Ideas

Membresía obligatoria de Professionals (100% free)

Debes ser miembro de Professionals (100% free) para acceder a este contenido.

Únete ahora

¿Ya eres miembro? Accede aquí
Related to: fixed-point theorem, Brouwer, continuous function, compact set, convex set, Nash equilibrium, game theory, algebraic topology

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

DISPONIBLE PARA NUEVOS RETOS
Ingeniero Mecánico, Gerente de Proyectos o de I+D
Desarrollo eficaz de productos

Disponible para un nuevo desafío a corto plazo.
Contáctame en LinkedIn
Integración de electrónica de plástico y metal, diseño a coste, GMP, ergonomía, dispositivos y consumibles de volumen medio a alto, industrias reguladas, CE y FDA, CAD, Solidworks, cinturón negro Lean Sigma, ISO 13485 médico

Estamos buscando un nuevo patrocinador

 

¿Su empresa o institución se dedica a la técnica, la ciencia o la investigación?
> Envíanos un mensaje <

Recibe todos los artículos nuevos
Gratuito, sin spam, correo electrónico no distribuido ni revendido.

o puedes obtener tu membresía completa -gratis- para acceder a todo el contenido restringido >aquí<

Historical Context

(if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)

Related Invention, Innovation & Technical Principles

Scroll al inicio

También te puede interesar