Hogar » Las mejores indicaciones de IA para ingeniería mecánica

Las mejores indicaciones de IA para ingeniería mecánica

La IA impulsa la ingeniería mecánica
Ai ingeniería mecánica
Las herramientas basadas en la inteligencia artificial están revolucionando la ingeniería mecánica al mejorar la optimización del diseño, la velocidad de simulación, el mantenimiento predictivo y la selección de materiales mediante el análisis avanzado de datos y el reconocimiento de patrones.

Las herramientas de IA en línea están transformando rápidamente la ingeniería mecánica al aumentar las capacidades humanas en diseño, análisis, fabricacióny mantenimiento. Estos sistemas de IA pueden procesar grandes cantidades de datos, identificar patrones complejos y generar soluciones novedosas mucho más rápido que los métodos tradicionales. Por ejemplo, la IA puede ayudarle a optimizar el rendimiento y la fabricabilidad de los diseños, acelerar simulaciones complejas, predecir las propiedades de los materiales y automatizar una amplia gama de tareas analíticas.

Las indicaciones que se ofrecen a continuación ayudarán, por ejemplo, en el diseño generativo, acelerarán las simulaciones (FEA/CFD), ayudarán en el mantenimiento predictivo en el que la IA analiza los datos de los sensores de la maquinaria para prever posibles fallos, lo que permite un mantenimiento proactivo y minimiza el tiempo de inactividad, ayudarán en la selección de materiales y mucho más.

  • Dados los recursos del servidor y el tiempo, los propios avisos están reservados sólo a los miembros registrados, y no son visibles a continuación si no se ha iniciado sesión. Puede registrarse, 100% gratis: 

Membresía requerida

Debes ser miembro para acceder a este contenido.

Ver niveles de membresía

¿Ya eres miembro? Accede aquí

AI Prompt to Estructura de la revisión bibliográfica para la introducción

Ayuda a estructurar la revisión bibliográfica para la sección de introducción de un trabajo de investigación identificando los temas clave de los resúmenes proporcionados y sugiriendo un flujo lógico para establecer la brecha de investigación para un tema de ingeniería mecánica. El resultado es un esquema en formato markdown y una guía narrativa.

Salida: 

				
					Act as a Research Methodology Advisor specializing in scientific writing for Mechanical Engineering.
Your TASK is to help structure the literature review part of an introduction section for a research paper on '`{research_topic_title}`'.
You will be given a `{list_of_key_abstracts_or_papers_text}` (a block of text containing several abstracts or summaries of key papers) and the `{main_research_gap_or_question}` the author intends to address.
Your goal is to propose a logical flow and thematic organization for the literature review that effectively leads to the stated research gap/question.

**PROPOSED LITERATURE REVIEW STRUCTURE (MUST be Markdown format):**

**Research Topic**: `{research_topic_title}`
**Stated Research Gap/Question**: `{main_research_gap_or_question}`

**I. Broad Context and Motivation (1-2 paragraphs)**
    *   **Guidance**: Start by establishing the general importance and relevance of the broader field related to `{research_topic_title}`.
    *   **Content to draw from `{list_of_key_abstracts_or_papers_text}`**: Identify abstracts that provide this wider context or highlight the significance of the area.
    *   **Example Phrasing**: "The field of [Broader Field of `{research_topic_title}`] has garnered significant attention due to its implications for..."

**II. Key Themes/Sub-areas from Existing Literature (organized thematically
 3-5 paragraphs typically)**
    *   **Guidance**: Analyze the `{list_of_key_abstracts_or_papers_text}` to identify recurring themes
 established findings
 common methodologies
 or different approaches related to `{research_topic_title}`. Group papers by these themes.
    *   **For each Theme/Sub-area X**: 
        *   **A. Introduce Theme X**: Briefly state what this theme covers.
        *   **B. Summarize Key Contributions**: Discuss what important studies (from the provided list) have found regarding Theme X. Mention specific authors or papers if they are seminal (e.g.
 "Smith et al. (Year) demonstrated...
 while Jones (Year) focused on...").
        *   **C. Highlight Consistencies or Contradictions**: Note if findings are generally in agreement or if there are conflicting results or debates within this theme.
    *   **Example Themes (AI to derive from abstracts)**: Based on typical mechanical engineering topics
 themes could be "Material Development for [Application]"
 "Advancements in [Specific Manufacturing Process]"
 "Computational Modeling of [Phenomenon]"
 "Experimental Validation of [Theory/Model]"
 "Limitations of Current [Technology/Approach]".

**III. Identification of a Specific Gap or Unresolved Issues (1-2 paragraphs)**
    *   **Guidance**: Transition from the summary of existing work to pinpointing specific limitations
 unanswered questions
 or underexplored areas that emerge from the reviewed literature. This section directly sets the stage for the `{main_research_gap_or_question}`.
    *   **Content to draw from `{list_of_key_abstracts_or_papers_text}`**: Look for phrases in abstracts like "further research is needed..."
 "limitations of this study include..."
 or areas where fewer studies exist.
    *   **Example Phasing**: "Despite these advancements
 several aspects remain underexplored..." or "A critical review of the literature reveals a gap in understanding..."

**IV. Statement of Current Work and How It Addresses the Gap (1 paragraph)**
    *   **Guidance**: Clearly state the `{main_research_gap_or_question}` that YOUR proposed paper will address.
    *   Briefly outline how your paper aims to fill this gap or answer this question
 linking it to the shortcomings identified in section III.
    *   **Example Phasing**: "Therefore
 the present study aims to address this gap by investigating [your specific objective related to `{main_research_gap_or_question}`] through [your brief method]..."

**Logical Flow Summary**:
    *   `General Importance -> Specific Area Review (Thematic) -> Limitations/Gaps in Specific Area -> How Current Paper Fills a Specific Gap.`

**IMPORTANT**: The AI should analyze the provided `{list_of_key_abstracts_or_papers_text}` to suggest plausible themes. The structure should provide a compelling narrative that justifies the need for the research addressing the `{main_research_gap_or_question}`.
							

AI Prompt to FMEA Table Generation for Subsystem

Generates a template for a Failure Modes and Effects Analysis (FMEA) for a specified mechanical subsystem listing potential failure modes causes effects and recommending initial severity occurrence and detection ratings. This jumpstarts the risk assessment process. Output is a CSV table structure.

Salida: 

				
					Act as a Reliability Engineer specializing in FMEA for Mechanical Systems.
Your TASK is to generate a structured FMEA table (as a CSV string) for the `{subsystem_name_and_function}`
 considering its `{key_components_list_csv}` and `{operating_environment_description}`. You should populate the table with common
 plausible failure modes
 causes
 and effects
 and suggest initial placeholder RPN ratings or qualitative assessments.

**1. Input Analysis**:
    *   `{subsystem_name_and_function}`: Clear description (e.g.
 'Fuel Pumping Unit for Diesel Engine - delivers pressurized fuel to injectors'
 'Landing Gear Retraction Actuator - hydraulic cylinder that retracts/deploys landing gear').
    *   `{key_components_list_csv}`: CSV string listing major components within the subsystem (e.g.
 'Pump_Housing
Electric_Motor
Impeller
Pressure_Regulator
Seals
Bearings').
    *   `{operating_environment_description}`: Details of operational context (e.g.
 'Automotive under-hood
 -40C to 120C
 high vibration
 exposure to fuel/oil'; 'Aerospace
 high cycle fatigue
 wide temperature range
 safety-critical').

**2. FMEA Table Generation Logic**: For each key component in `{key_components_list_csv}` (or for the subsystem as a whole
 focusing on its functions):
    *   **Identify Potential Failure Modes**: What are common ways this component or function can fail? (e.g.
 For a pump: 'Fails to deliver pressure'
 'Leaks'
 'Noisy operation'
 'Seizure'. For a motor: 'Fails to start'
 'Overheats'
 'Excessive vibration').
    *   **Identify Potential Causes**: For each failure mode
 list plausible causes (e.g.
 For pump 'Fails to deliver pressure': 'Impeller wear'
 'Motor failure'
 'Blocked inlet'
 'Internal leakage'). Consider material degradation
 wear and tear
 manufacturing defects
 operational errors
 environmental factors from `{operating_environment_description}`.
    *   **Identify Potential Effects**: For each failure mode
 what are the consequences on the subsystem
 the larger system
 and the end-user/environment? (e.g.
 For pump 'Fails to deliver pressure': 'Engine stalls (system effect)'
 'Vehicle stranded (end-user effect)'
 'Loss of mission (aerospace context)').
    *   **Current Controls (Prevention/Detection)**: Suggest typical preventative controls (design features
 manufacturing tests) or detection controls (sensors
 inspection methods) that might be in place. If none obvious
 state 'None Assumed' or 'To be determined'.
    *   **Assign Initial S-O-D Ratings (Severity
 Occurrence
 Detection)**: Use a 1-10 scale (10 being worst for S/O
 10 being worst/hardest for D). These are INITIAL ESTIMATES to be reviewed by the engineering team.
        *   Severity (S): Based on the worst potential effect.
        *   Occurrence (O): Likelihood of the cause occurring. Consider `{operating_environment_description}`.
        *   Detection (D): Likelihood of detecting the cause or failure mode before it has a major effect
 based on current controls.
    *   **Calculate RPN (Risk Priority Number)**: S x O x D.
    *   **Recommended Actions (Placeholder)**: Initially can be 'Investigate further'
 'Consider design change'
 'Improve detection method' or leave blank for team input.

**3. Output Format (CSV String)**:
    *   The CSV header MUST be: `Item_Or_Function
Potential_Failure_Mode
Potential_Effect_of_Failure
Severity_S
Potential_Cause_of_Failure
Occurrence_O
Current_Design_Controls_Prevention
Current_Design_Controls_Detection
Detection_D
RPN
Recommended_Actions`
    *   Each row will represent one failure mode.
    *   Example row snippet (conceptual):
    `Electric_Motor
Fails_to_start
Subsystem_inoperable
Engine_does_not_start
Vehicle_stranded
8
Open_circuit_in_winding
Corrosion_due_to_environment
4
Visual_inspection_at_assembly
None_during_operation
7
224
Review_winding_protection
Consider_sealed_unit`

**IMPORTANT**: This FMEA is a STARTER TEMPLATE. The AI should populate it with plausible
 common mechanical failure scenarios. The ratings are subjective and for initial discussion by the engineering team. Emphasize that this output needs thorough review and validation by experts familiar with the specific design.
							

AI Prompt to Manufacturing Cell Hazard Identification

Identifies potential safety hazards in a new or modified manufacturing cell layout based on its description processes and human interaction points. This helps in proactively addressing safety concerns during the design phase. Output is a categorized markdown list.

Salida: 

				
					Act as a Manufacturing Safety Engineer.
Your TASK is to identify potential safety hazards for a new or modified manufacturing cell
 based on the `{cell_layout_description}`
 the `{processes_involved_list_csv}`
 and the specified `{human_interaction_points_text}`.
You should categorize hazards for clarity.

**1. Input Analysis**:
    *   `{cell_layout_description}`: A textual description of the cell's physical layout
 including major equipment (e.g.
 'Robotic arm'
 'CNC machine'
 'Conveyor belt'
 'Assembly station'
 'Parts bins')
 and their relative positions. If it's from a sketch
 user describes the sketch.
    *   `{processes_involved_list_csv}`: CSV string listing the manufacturing processes occurring within the cell (e.g.
 'Welding
Material_handling
Machining
Automated_inspection
Manual_assembly').
    *   `{human_interaction_points_text}`: Description of where
 when
 and how human operators interact with the cell (e.g.
 'Loading raw materials at Station A'
 'Unloading finished parts from conveyor at Station B'
 'Performing maintenance on CNC machine'
 'Clearing jams in robot gripper'
 'Supervising automated processes').

**2. Hazard Identification Methodology**: Based on the inputs
 systematically consider different types of hazards. For each identified hazard
 briefly note its potential consequence.
    *   **Mechanical Hazards**: From moving parts
 robots
 machinery.
        *   Crushing
 shearing
 cutting
 entanglement
 impact (e.g.
 robot arm movement
 machine tool operation
 conveyor pinch points
 falling objects).
    *   **Electrical Hazards**: From power supplies
 wiring
 control panels.
        *   Shock
 burns
 arc flash.
    *   **Thermal Hazards**: From hot processes or components.
        *   Burns from welding
 heated tooling
 hot parts.
    *   **Ergonomic Hazards**: From workstation design
 manual handling
 repetitive tasks at `{human_interaction_points_text}`.
        *   Musculoskeletal disorders
 strain.
    *   **Process-Specific Hazards**: Related to the `{processes_involved_list_csv}`.
        *   Welding: Fumes
 UV radiation
 fire.
        *   Machining: Flying chips
 coolant exposure
 tool breakage.
        *   Material Handling: Dropped loads
 collisions with automated guided vehicles (if any).
    *   **Automation-Related Hazards**: Especially concerning robotics or automated machinery.
        *   Unexpected robot movement
 programming errors
 sensor failures leading to incorrect actions
 trapping points between robot and fixed structures.
    *   **Trip
 Slip
 and Fall Hazards**: From cables
 spills
 uneven surfaces within the cell layout.
    *   **Chemical Hazards (if applicable)**: From coolants
 lubricants
 cleaning agents
 process byproducts.
    *   **Noise Hazards**: From machinery
 pneumatic systems.

**3. Output Format (Markdown)**:
    *   **Title**: Potential Safety Hazards for Manufacturing Cell: `{cell_layout_description (brief title form)}`
    *   **Introduction**: Briefly state the purpose of the hazard identification.
    *   **Hazard Categories (use H3 or H4 headings for each category below)**:
        *   **Mechanical Hazards**
            *   `- [Hazard 1]: Brief description
 e.g.
 Robot arm collision with operator at loading station. Potential Consequence: Impact injury
 crushing.`
            *   `- [Hazard 2]: ...`
        *   **Electrical Hazards**
            *   `- [Hazard 1]: ...`
        *   **Thermal Hazards**
            *   `- [Hazard 1]: ...`
        *   **(And so on for all relevant categories listed in step 2)**
    *   **Specific Considerations for Human Interaction Points**:
        *   Highlight hazards particularly relevant at the points mentioned in `{human_interaction_points_text}`.
    *   **General Recommendations (Brief)**:
        *   Suggest general next steps
 e.g.
 'Conduct detailed risk assessment for each identified hazard.'
 'Consider hierarchy of controls (elimination
 substitution
 engineering controls
 administrative
 PPE).'

**IMPORTANT**: The list should be comprehensive but focused on PLAUSIBLE hazards given the inputs. The AI is not performing a full risk assessment
 just identifying potential hazards for further investigation. Encourage a systematic approach.
							

AI Prompt to Mitigation Strategies for Vibration Failures

Suggests and elaborates on potential mitigation strategies for vibration-induced failures in specified mechanical equipment given a summary of vibration data and any current attempts. This helps engineers find solutions to improve reliability. Output is a markdown list.

Salida: 

				
					Act as a Vibration Analysis and Reliability Engineering Consultant.
Your TASK is to propose and elaborate on potential mitigation strategies for vibration-induced failures in the `{equipment_description_text}`
 considering the `{vibration_data_summary_text}` and any `{current_mitigation_attempts_text}`.
You should suggest a range of solutions
 from simple to more complex.

**1. Input Analysis**:
    *   `{equipment_description_text}`: Description of the affected equipment and its function (e.g.
 'Centrifugal pump
 Model XYZ
 used for cooling water circulation'
 'Large industrial fan mounted on steel frame'
 'Pipeline section experiencing flow-induced vibration').
    *   `{vibration_data_summary_text}`: Key characteristics of the problematic vibration (e.g.
 'High amplitude at 1x rotational speed (unbalance)'
 'Dominant frequency matches nearby machine's operating speed (external source)'
 'Broadband random vibration with peaks near structural resonances'
 'Flow-induced vibration at 50-60 Hz'). Include specific frequencies and amplitudes if known.
    *   `{current_mitigation_attempts_text}`: What
 if anything
 has already been tried and its outcome (e.g.
 'Attempted balancing
 reduced vibration by 20% but still too high'
 'Added stiffeners to frame
 shifted resonance but problem persists at new frequency'
 'None attempted yet').

**2. Mitigation Strategy Brainstorming & Elaboration**: Based on the inputs
 propose several distinct strategies. For each strategy:
    *   **Strategy Name/Type**: (e.g.
 Source Modification
 Path Interruption
 System Modification
 Damping Treatment).
    *   **Specific Action(s)**: Detail the concrete steps or changes involved.
    *   **Principle of Operation**: Explain HOW this strategy reduces vibration or its effects in the context of the `{vibration_data_summary_text}`.
    *   **Applicability/Suitability**: How well does this strategy address the likely root cause suggested by the vibration data? (e.g.
 If unbalance is indicated
 balancing is highly applicable).
    *   **Potential Pros**: Advantages of this approach.
    *   **Potential Cons/Challenges**: Disadvantages
 cost
 complexity
 potential side effects.
    *   **Consideration given `{current_mitigation_attempts_text}`**: How does this build upon or differ from what was already tried?

    **Categories of Strategies to Consider (examples
 tailor to the problem)**:
    *   **Source Treatment**:
        *   Balancing (for rotating machinery).
        *   Alignment (for coupled machines).
        *   Modifying operating speed to avoid resonance.
        *   Reducing fluid flow velocity or changing flow path (for FIV).
    *   **Path Treatment**:
        *   Isolation: Using resilient mounts (elastomeric
 spring isolators) to decouple the source from the receiver.
        *   Barriers: Enclosures for noise/vibration.
    *   **System Response Modification**:
        *   Stiffening: Adding braces or gussets to shift natural frequencies away from excitation frequencies.
        *   Mass Addition: Adding mass to shift natural frequencies.
        *   Damping: 
            *   Applied Damping Treatments (e.g.
 viscoelastic layers
 constrained layer damping).
            *   Tuned Mass Dampers (TMDs) for specific problematic frequencies.
        *   Active Vibration Control (more complex
 using sensors
 actuators
 and controllers).

**3. Output Format (Markdown)**:
    *   **Title**: Vibration Mitigation Strategies for `{equipment_description_text}`.
    *   **1. Summary of Vibration Problem**: Briefly restate the core issue based on inputs.
    *   **2. Proposed Mitigation Strategies**: For each strategy:
        *   `### Strategy X: [Strategy Name/Type]`
            *   `**Specific Actions:**`
            *   `**Principle of Operation:**`
            *   `**Applicability/Suitability:**`
            *   `**Potential Pros:**`
            *   `**Potential Cons/Challenges:**`
            *   `**Relation to Previous Attempts:**`
    *   **3. General Recommendations & Next Steps**: Suggest a logical approach to selecting and implementing strategies (e.g.
 'Start with source treatment if possible'
 'Consider simulation or modal analysis to predict effectiveness of structural modifications'
 'Implement incrementally and monitor results').

**IMPORTANT**: The strategies should be technically sound and relevant to the described problem. The AI should aim to provide a range of options suitable for different levels of complexity and cost.
							

AI Prompt to Comprobación del cumplimiento de la seguridad en el diseño de máquinas

Evalúa las características del diseño de una máquina comparándolas con fragmentos proporcionados por el usuario de las cláusulas pertinentes de las normas de seguridad para identificar posibles áreas de incumplimiento. Esto ayuda a diseñar máquinas más seguras desde el principio. El resultado es una lista de comprobación.

Salida: 

				
					Act as a Machinery Safety Specialist with expertise in CE Marking/OSHA compliance (or general machinery safety principles).
Your TASK is to perform a preliminary safety compliance check of the described `{machine_design_features_description_text}` against the provided `{safety_standard_clauses_text}`. Consider the general safety expectations for the `{country_of_operation_for_context}` if it influences interpretation (e.g. EU vs USA).

**1. Input Analysis**:
    *   `{machine_design_features_description_text}`: A textual description of the machine's key design features
 safety components (guards
 E-stops
 interlocks)
 operational modes
 and human interaction points.
    *   `{safety_standard_clauses_text}`: Text containing specific clauses or requirements excerpted from relevant safety standard(s) (e.g.
 snippets from ISO 12100
 ISO 13849-1
 IEC 60204-1
 or specific Type-C standards). The user provides these excerpts.
    *   `{country_of_operation_for_context}`: The intended country or region of operation (e.g.
 'European Union'
 'USA'
 'China')
 as general safety philosophies can differ.

**2. Compliance Check Methodology**: For EACH provided clause in `{safety_standard_clauses_text}`:
    *   **Understand Clause Requirement**: Interpret the main safety objective or requirement of the clause.
    *   **Compare with Design Features**: Assess the `{machine_design_features_description_text}` against this specific requirement.
        *   Does the design appear to meet the requirement?
        *   Are there features that clearly violate or contradict the requirement?
        *   Is there insufficient information in the design description to make a judgment?
    *   **Identify Potential Gaps or Non-Compliances**: Clearly state where the design may fall short.
    *   **Suggest Areas for Improvement or Verification**: What specific aspects of the design should be reviewed
 modified
 or further documented to ensure compliance with this clause?

**3. Output Format (Markdown)**:
    *   **Title**: Preliminary Safety Compliance Check: [Machine Name/Type from description] vs. Provided Standard Clauses.
    *   **Context**: Machine intended for operation in: `{country_of_operation_for_context}`.
    *   **Compliance Checklist**: For each clause provided by the user:
        *   `---`
        *   `**Clause Reference:** [Quote or clearly reference the clause from {safety_standard_clauses_text}]`
        *   `**Clause Summary/Objective:** [Your brief interpretation of what the clause aims to achieve]`
        *   `**Assessment against Machine Design ({machine_design_features_description_text}):**`
            *   `  - **Compliance Status:** [Compliant / Potentially Non-Compliant / Insufficient Information / Partially Compliant]`
            *   `  - **Observations/Reasoning:** [Explain your assessment based on the design features. Be specific.]`
            *   `  - **Potential Gaps Identified (if any):**`
                *   `    - Gap 1: ...`
                *   `    - Gap 2: ...`
            *   `  - **Recommendations/Questions for Design Team:**`
                *   `    - Recommendation 1: e.g.
 'Verify guard opening sizes against EN ISO 13857 for this hazard zone.'`
                *   `    - Question 1: e.g.
 'Is the emergency stop a Category 0 or Category 1 stop as per IEC 60204-1?'`
    *   `---`
    *   **Overall Disclaimer**: `This is a preliminary assessment based SOLELY on the provided design description and standard excerpts. A full compliance assessment requires a detailed review of the complete machine
 its documentation
 a full risk assessment
 and consultation of the complete unabridged standards.`

**IMPORTANT**: The AI is NOT certifying compliance. It is identifying potential areas of concern or questions based on a limited comparison. The assessment should be objective and constructive
 aiming to help the design team improve safety. If a clause is very complex or requires deep domain-specific knowledge not available
 it's okay to state that a specialist review is needed for that point.
							

AI Prompt to Evaluación ética de riesgos en proyectos mecánicos

Este ejercicio guía a la IA para que analice los riesgos éticos y las consecuencias sociales de un proyecto específico de ingeniería mecánica, teniendo en cuenta factores medioambientales, de seguridad y de impacto social. Requiere una descripción detallada del proyecto y la aplicación prevista para proporcionar una evaluación estructurada de los riesgos éticos con recomendaciones de medidas de mitigación.

Salida: 

				
					Analyze the following mechanical engineering project for potential ethical risks and societal consequences. The project description is: {project_description}. The intended application is: {intended_application}. Please provide a detailed ethical risk assessment that includes: 1) Identification of possible environmental impacts 2) Safety concerns for users and communities 3) Social and economic consequences 4) Recommendations for mitigating identified risks. Format your response using clear headings and bullet points for each section. Capitalize important keywords and use markdown for readability.
							

AI Prompt to Generador de informes de sostenibilidad e impacto ambiental

Esta solicitud pide a la IA que genere un informe completo de sostenibilidad e impacto medioambiental para una tecnología o proceso de ingeniería mecánica determinado, teniendo en cuenta el análisis del ciclo de vida, los materiales utilizados y el consumo de energía. El usuario introduce el nombre de la tecnología y los parámetros clave.

Salida: 

				
					Generate a detailed sustainability and environmental impact report for the mechanical engineering technology named {technology_name}. Use the following key parameters to guide your analysis: {key_parameters}. Include sections on: 1) Lifecycle environmental impact including raw materials sourcing and disposal 2) Energy consumption and efficiency 3) Potential for recycling or reuse 4) Recommendations for improving sustainability. Use markdown formatting with headings, bullet points, and bold important terms for clarity.
							

AI Prompt to Análisis de las implicaciones políticas de las innovaciones mecánicas

Esta instrucción pide a la IA que evalúe las implicaciones políticas y normativas de la implantación de una nueva innovación en ingeniería mecánica. El usuario proporciona la descripción de la innovación y la región o el país de destino para adaptar el análisis a la legislación y las normas pertinentes.

Salida: 

				
					Evaluate the policy and regulatory implications of the following mechanical engineering innovation: {innovation_description}. Focus your analysis on the target region or country: {target_region}. Outline existing regulations, standards, and compliance requirements that could affect deployment. Provide recommendations on policy adaptation or lobbying strategies to facilitate innovation adoption. Use numbered lists and clear subheadings to organize your response.
							

AI Prompt to Generador de escenarios de dilemas éticos para ingenieros

Este ejercicio pide a la IA que cree escenarios realistas de dilemas éticos adaptados específicamente a los ingenieros mecánicos y basados en un tema o tecnología proporcionados. Ayuda a los profesionales a anticipar y debatir situaciones difíciles que requieren una toma de decisiones ética.

Salida: 

				
					Generate 3 detailed ethical dilemma scenarios related to the mechanical engineering topic: {topic}. For each scenario, include: 1) A brief description of the situation 2) The conflicting ethical principles involved 3) Potential consequences of different decisions 4) Suggested approaches to resolve the dilemma. Format the output as a JSON array with keys: 'scenario', 'ethical_conflict', 'consequences', and 'resolution'. Capitalize key terms in the text for emphasis.
							

AI Prompt to Traducción de especificaciones técnicas

Traduce un bloque de especificaciones técnicas de un componente o sistema mecánico de un idioma de origen a un idioma de destino garantizando la precisión terminológica. Esto facilita la colaboración internacional y la documentación del producto. El resultado es el texto traducido.

Salida: 

				
					Act as a Technical Translator specializing in Mechanical Engineering documentation.
Your TASK is to translate the provided `{technical_specifications_text}` from `{source_language_name_or_code}` to `{target_language_name_or_code}`.
You MUST prioritize technical accuracy and the correct translation of specialized mechanical engineering terminology.

**1. Input Parameters**:
    *   `{source_language_name_or_code}`: The language of the input text (e.g.
 'English'
 'German'
 'zh-CN').
    *   `{target_language_name_or_code}`: The language into which the text should be translated (e.g.
 'Spanish'
 'French'
 'ja-JP').
    *   `{technical_specifications_text}`: The block of text containing technical specifications. This may include parameters
 material callouts
 performance data
 testing standards
 etc.

**2. Translation Process**:
    *   **Understand Context**: Parse the `{technical_specifications_text}` to understand the component/system being described.
    *   **Terminology Management**:
        *   Identify key technical terms
 units of measure
 and industry-specific jargon.
        *   Translate these terms with high fidelity
 using established technical equivalents in the `{target_language_name_or_code}`. AVOID literal translations that might be technically incorrect.
        *   Ensure consistency in terminology throughout the translated text.
    *   **Preserve Meaning and Structure**:
        *   Translate not just words
 but the precise technical meaning of each specification point.
        *   Maintain the original formatting (e.g.
 bullet points
 numbered lists
 table-like structures if discernible in plain text) as much as possible in the translated output.
    *   **Units of Measure**:
        *   If units are present (e.g.
 mm
 MPa
 kg)
 generally retain them as they are
 as these are often internationally understood. If conversion is explicitly part of a localization requirement (not requested here but good to be aware of)
 that would be a separate instruction. For this task
 keep units as in source unless the unit name itself needs translation (e.g.
 'pounds' to 'kilograms' is a conversion
 but if the word 'pounds' appeared it would be translated if appropriate). Assume standard SI/metric units are preferred if ambiguity arises and context suggests a technical document for global use.

**3. Output**:
    *   The output MUST be the translated text in the `{target_language_name_or_code}` ONLY.
    *   Do NOT include any of the original `{technical_specifications_text}` unless it's part of a bilingual presentation format (which is not requested here).
    *   Do NOT include any comments or annotations unless specifically part of the original text.

**IMPORTANT**: Accuracy is PARAMOUNT. If a term is highly ambiguous and could have multiple technical translations
 choose the one most commonly accepted in general mechanical engineering for the `{target_language_name_or_code}`. If you are an AI with limitations in translation quality for very specific jargon
 you might add a disclaimer if appropriate
 but the primary goal is the best possible technical translation. Strive for a natural-sounding translation in the target language
 as if written by a native technical expert.
							
Tabla de contenido
    إضافة رأس لبدء إنشاء جدول المحتويات

    ¿DISEÑO o RETO DE PROYECTO?
    Ingeniero Mecánico, Gerente de Proyectos o de I+D
    Desarrollo eficaz de productos

    Disponible para un nuevo desafío a corto plazo en Francia y Suiza.
    Contáctame en LinkedIn
    Productos de plástico y metal, Diseño a coste, Ergonomía, Volumen medio a alto, Industrias reguladas, CE y FDA, CAD, Solidworks, Lean Sigma Black Belt, ISO 13485 Clase II y III médica

    Buscamos un nuevo patrocinador

     

    ¿Su empresa o institución se dedica a la técnica, la ciencia o la investigación?
    > Envíanos un mensaje <

    Recibe todos los artículos nuevos
    Gratuito, sin spam, correo electrónico no distribuido ni revendido.

    o puedes obtener tu membresía completa -gratis- para acceder a todo el contenido restringido >aquí<

    Temas tratados: preguntas de prueba, validación, introducción de datos por el usuario, recogida de datos, mecanismo de retroalimentación, pruebas interactivas, diseño de encuestas, pruebas de usabilidad, evaluación de software, diseño experimental, evaluación del rendimiento, cuestionario, ISO 9241, ISO 25010, ISO 20282, ISO 13407 e ISO 26362...

    1. Wynter

      ¿Estamos asumiendo que la IA siempre puede generar las mejores indicaciones en ingeniería mecánica? ¿Cómo se generan?

    2. Giselle

      ¿Hará la IA innecesarios a los ingenieros humanos?

    Deja un comentario

    Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

    Publicaciones relacionadas

    Scroll al inicio

    También te puede interesar