
Las herramientas de IA en línea están transformando rápidamente la ingeniería mecánica al aumentar las capacidades humanas en diseño, análisis, fabricacióny mantenimiento. Estos sistemas de IA pueden procesar grandes cantidades de datos, identificar patrones complejos y generar soluciones novedosas mucho más rápido que los métodos tradicionales. Por ejemplo, la IA puede ayudarle a optimizar el rendimiento y la fabricabilidad de los diseños, acelerar simulaciones complejas, predecir las propiedades de los materiales y automatizar una amplia gama de tareas analíticas.
Las indicaciones que se ofrecen a continuación ayudarán, por ejemplo, en el diseño generativo, acelerarán las simulaciones (FEA/CFD), ayudarán en el mantenimiento predictivo en el que la IA analiza los datos de los sensores de la maquinaria para prever posibles fallos, lo que permite un mantenimiento proactivo y minimiza el tiempo de inactividad, ayudarán en la selección de materiales y mucho más.
- Esta página es específica para un dominio. Si lo desea, puede realizar búsquedas en todos los dominios y según todos los criterios en nuestro >. Directorio AI Prompts <, dedicado a diseño de producto y innovación.
- Dados los recursos del servidor y el tiempo, los propios avisos están reservados sólo a los miembros registrados, y no son visibles a continuación si no se ha iniciado sesión. Puede registrarse, 100% gratis:
- Asistencia para propuestas de subvención y redacción científica
- Ingeniería mecánica
AI Prompt to Estructura de la revisión bibliográfica para la introducción
- Fabricación aditiva, Mejora continua, Diseño para fabricación aditiva (DfAM), Innovación, Ingeniería Mecánica, Gestión de calidad, Prácticas de sostenibilidad
Ayuda a estructurar la revisión bibliográfica para la sección de introducción de un trabajo de investigación identificando los temas clave de los resúmenes proporcionados y sugiriendo un flujo lógico para establecer la brecha de investigación para un tema de ingeniería mecánica. El resultado es un esquema en formato markdown y una guía narrativa.
Salida:
- Markdown
- no requiere Internet en directo
- Campos: {título_del_tema_de_investigación} {list_of_key_abstracts_or_papers_text} {principal_falta_de_investigación_o_pregunta}
Act as a Research Methodology Advisor specializing in scientific writing for Mechanical Engineering.
Your TASK is to help structure the literature review part of an introduction section for a research paper on '`{research_topic_title}`'.
You will be given a `{list_of_key_abstracts_or_papers_text}` (a block of text containing several abstracts or summaries of key papers) and the `{main_research_gap_or_question}` the author intends to address.
Your goal is to propose a logical flow and thematic organization for the literature review that effectively leads to the stated research gap/question.
**PROPOSED LITERATURE REVIEW STRUCTURE (MUST be Markdown format):**
**Research Topic**: `{research_topic_title}`
**Stated Research Gap/Question**: `{main_research_gap_or_question}`
**I. Broad Context and Motivation (1-2 paragraphs)**
* **Guidance**: Start by establishing the general importance and relevance of the broader field related to `{research_topic_title}`.
* **Content to draw from `{list_of_key_abstracts_or_papers_text}`**: Identify abstracts that provide this wider context or highlight the significance of the area.
* **Example Phrasing**: "The field of [Broader Field of `{research_topic_title}`] has garnered significant attention due to its implications for..."
**II. Key Themes/Sub-areas from Existing Literature (organized thematically
3-5 paragraphs typically)**
* **Guidance**: Analyze the `{list_of_key_abstracts_or_papers_text}` to identify recurring themes
established findings
common methodologies
or different approaches related to `{research_topic_title}`. Group papers by these themes.
* **For each Theme/Sub-area X**:
* **A. Introduce Theme X**: Briefly state what this theme covers.
* **B. Summarize Key Contributions**: Discuss what important studies (from the provided list) have found regarding Theme X. Mention specific authors or papers if they are seminal (e.g.
"Smith et al. (Year) demonstrated...
while Jones (Year) focused on...").
* **C. Highlight Consistencies or Contradictions**: Note if findings are generally in agreement or if there are conflicting results or debates within this theme.
* **Example Themes (AI to derive from abstracts)**: Based on typical mechanical engineering topics
themes could be "Material Development for [Application]"
"Advancements in [Specific Manufacturing Process]"
"Computational Modeling of [Phenomenon]"
"Experimental Validation of [Theory/Model]"
"Limitations of Current [Technology/Approach]".
**III. Identification of a Specific Gap or Unresolved Issues (1-2 paragraphs)**
* **Guidance**: Transition from the summary of existing work to pinpointing specific limitations
unanswered questions
or underexplored areas that emerge from the reviewed literature. This section directly sets the stage for the `{main_research_gap_or_question}`.
* **Content to draw from `{list_of_key_abstracts_or_papers_text}`**: Look for phrases in abstracts like "further research is needed..."
"limitations of this study include..."
or areas where fewer studies exist.
* **Example Phasing**: "Despite these advancements
several aspects remain underexplored..." or "A critical review of the literature reveals a gap in understanding..."
**IV. Statement of Current Work and How It Addresses the Gap (1 paragraph)**
* **Guidance**: Clearly state the `{main_research_gap_or_question}` that YOUR proposed paper will address.
* Briefly outline how your paper aims to fill this gap or answer this question
linking it to the shortcomings identified in section III.
* **Example Phasing**: "Therefore
the present study aims to address this gap by investigating [your specific objective related to `{main_research_gap_or_question}`] through [your brief method]..."
**Logical Flow Summary**:
* `General Importance -> Specific Area Review (Thematic) -> Limitations/Gaps in Specific Area -> How Current Paper Fills a Specific Gap.`
**IMPORTANT**: The AI should analyze the provided `{list_of_key_abstracts_or_papers_text}` to suggest plausible themes. The structure should provide a compelling narrative that justifies the need for the research addressing the `{main_research_gap_or_question}`.
- Lo mejor para: Ayudar a los ingenieros mecánicos a estructurar la revisión bibliográfica en las introducciones de los trabajos de investigación organizando temáticamente la información de los resúmenes existentes y conduciendo lógicamente a la brecha de investigación.
- Evaluación de riesgos y análisis de seguridad
- Ingeniería mecánica
AI Prompt to FMEA Table Generation for Subsystem
- Diseño para la fabricación (DfM), Validación del diseño, Análisis de modos de fallo y efectos (FMEA), Ingeniería Mecánica, Mejora de procesos, Control de calidad, Gestión de calidad, Análisis de riesgos, Gestión de riesgos
Generates a template for a Failure Modes and Effects Analysis (FMEA) for a specified mechanical subsystem listing potential failure modes causes effects and recommending initial severity occurrence and detection ratings. This jumpstarts the risk assessment process. Output is a CSV table structure.
Salida:
- CSV
- no requiere Internet en directo
- Fields: {subsystem_name_and_function} {key_components_list_csv} {operating_environment_description}
Act as a Reliability Engineer specializing in FMEA for Mechanical Systems.
Your TASK is to generate a structured FMEA table (as a CSV string) for the `{subsystem_name_and_function}`
considering its `{key_components_list_csv}` and `{operating_environment_description}`. You should populate the table with common
plausible failure modes
causes
and effects
and suggest initial placeholder RPN ratings or qualitative assessments.
**1. Input Analysis**:
* `{subsystem_name_and_function}`: Clear description (e.g.
'Fuel Pumping Unit for Diesel Engine - delivers pressurized fuel to injectors'
'Landing Gear Retraction Actuator - hydraulic cylinder that retracts/deploys landing gear').
* `{key_components_list_csv}`: CSV string listing major components within the subsystem (e.g.
'Pump_Housing
Electric_Motor
Impeller
Pressure_Regulator
Seals
Bearings').
* `{operating_environment_description}`: Details of operational context (e.g.
'Automotive under-hood
-40C to 120C
high vibration
exposure to fuel/oil'; 'Aerospace
high cycle fatigue
wide temperature range
safety-critical').
**2. FMEA Table Generation Logic**: For each key component in `{key_components_list_csv}` (or for the subsystem as a whole
focusing on its functions):
* **Identify Potential Failure Modes**: What are common ways this component or function can fail? (e.g.
For a pump: 'Fails to deliver pressure'
'Leaks'
'Noisy operation'
'Seizure'. For a motor: 'Fails to start'
'Overheats'
'Excessive vibration').
* **Identify Potential Causes**: For each failure mode
list plausible causes (e.g.
For pump 'Fails to deliver pressure': 'Impeller wear'
'Motor failure'
'Blocked inlet'
'Internal leakage'). Consider material degradation
wear and tear
manufacturing defects
operational errors
environmental factors from `{operating_environment_description}`.
* **Identify Potential Effects**: For each failure mode
what are the consequences on the subsystem
the larger system
and the end-user/environment? (e.g.
For pump 'Fails to deliver pressure': 'Engine stalls (system effect)'
'Vehicle stranded (end-user effect)'
'Loss of mission (aerospace context)').
* **Current Controls (Prevention/Detection)**: Suggest typical preventative controls (design features
manufacturing tests) or detection controls (sensors
inspection methods) that might be in place. If none obvious
state 'None Assumed' or 'To be determined'.
* **Assign Initial S-O-D Ratings (Severity
Occurrence
Detection)**: Use a 1-10 scale (10 being worst for S/O
10 being worst/hardest for D). These are INITIAL ESTIMATES to be reviewed by the engineering team.
* Severity (S): Based on the worst potential effect.
* Occurrence (O): Likelihood of the cause occurring. Consider `{operating_environment_description}`.
* Detection (D): Likelihood of detecting the cause or failure mode before it has a major effect
based on current controls.
* **Calculate RPN (Risk Priority Number)**: S x O x D.
* **Recommended Actions (Placeholder)**: Initially can be 'Investigate further'
'Consider design change'
'Improve detection method' or leave blank for team input.
**3. Output Format (CSV String)**:
* The CSV header MUST be: `Item_Or_Function
Potential_Failure_Mode
Potential_Effect_of_Failure
Severity_S
Potential_Cause_of_Failure
Occurrence_O
Current_Design_Controls_Prevention
Current_Design_Controls_Detection
Detection_D
RPN
Recommended_Actions`
* Each row will represent one failure mode.
* Example row snippet (conceptual):
`Electric_Motor
Fails_to_start
Subsystem_inoperable
Engine_does_not_start
Vehicle_stranded
8
Open_circuit_in_winding
Corrosion_due_to_environment
4
Visual_inspection_at_assembly
None_during_operation
7
224
Review_winding_protection
Consider_sealed_unit`
**IMPORTANT**: This FMEA is a STARTER TEMPLATE. The AI should populate it with plausible
common mechanical failure scenarios. The ratings are subjective and for initial discussion by the engineering team. Emphasize that this output needs thorough review and validation by experts familiar with the specific design.
- Best for: Streamlining the FMEA process by generating a pre-populated table with potential failure modes causes effects and initial RPN ratings for mechanical subsystems.
- Evaluación de riesgos y análisis de seguridad
- Ingeniería mecánica
AI Prompt to Manufacturing Cell Hazard Identification
- Mejora continua, Ergonomía, Estudio de peligros y operabilidad (HAZOP), Human Factors, Manufactura esbelta, Mejora de procesos, Análisis de riesgos, Gestión de riesgos, Seguridad
Identifies potential safety hazards in a new or modified manufacturing cell layout based on its description processes and human interaction points. This helps in proactively addressing safety concerns during the design phase. Output is a categorized markdown list.
Salida:
- Markdown
- no requiere Internet en directo
- Fields: {cell_layout_description} {processes_involved_list_csv} {human_interaction_points_text}
Act as a Manufacturing Safety Engineer.
Your TASK is to identify potential safety hazards for a new or modified manufacturing cell
based on the `{cell_layout_description}`
the `{processes_involved_list_csv}`
and the specified `{human_interaction_points_text}`.
You should categorize hazards for clarity.
**1. Input Analysis**:
* `{cell_layout_description}`: A textual description of the cell's physical layout
including major equipment (e.g.
'Robotic arm'
'CNC machine'
'Conveyor belt'
'Assembly station'
'Parts bins')
and their relative positions. If it's from a sketch
user describes the sketch.
* `{processes_involved_list_csv}`: CSV string listing the manufacturing processes occurring within the cell (e.g.
'Welding
Material_handling
Machining
Automated_inspection
Manual_assembly').
* `{human_interaction_points_text}`: Description of where
when
and how human operators interact with the cell (e.g.
'Loading raw materials at Station A'
'Unloading finished parts from conveyor at Station B'
'Performing maintenance on CNC machine'
'Clearing jams in robot gripper'
'Supervising automated processes').
**2. Hazard Identification Methodology**: Based on the inputs
systematically consider different types of hazards. For each identified hazard
briefly note its potential consequence.
* **Mechanical Hazards**: From moving parts
robots
machinery.
* Crushing
shearing
cutting
entanglement
impact (e.g.
robot arm movement
machine tool operation
conveyor pinch points
falling objects).
* **Electrical Hazards**: From power supplies
wiring
control panels.
* Shock
burns
arc flash.
* **Thermal Hazards**: From hot processes or components.
* Burns from welding
heated tooling
hot parts.
* **Ergonomic Hazards**: From workstation design
manual handling
repetitive tasks at `{human_interaction_points_text}`.
* Musculoskeletal disorders
strain.
* **Process-Specific Hazards**: Related to the `{processes_involved_list_csv}`.
* Welding: Fumes
UV radiation
fire.
* Machining: Flying chips
coolant exposure
tool breakage.
* Material Handling: Dropped loads
collisions with automated guided vehicles (if any).
* **Automation-Related Hazards**: Especially concerning robotics or automated machinery.
* Unexpected robot movement
programming errors
sensor failures leading to incorrect actions
trapping points between robot and fixed structures.
* **Trip
Slip
and Fall Hazards**: From cables
spills
uneven surfaces within the cell layout.
* **Chemical Hazards (if applicable)**: From coolants
lubricants
cleaning agents
process byproducts.
* **Noise Hazards**: From machinery
pneumatic systems.
**3. Output Format (Markdown)**:
* **Title**: Potential Safety Hazards for Manufacturing Cell: `{cell_layout_description (brief title form)}`
* **Introduction**: Briefly state the purpose of the hazard identification.
* **Hazard Categories (use H3 or H4 headings for each category below)**:
* **Mechanical Hazards**
* `- [Hazard 1]: Brief description
e.g.
Robot arm collision with operator at loading station. Potential Consequence: Impact injury
crushing.`
* `- [Hazard 2]: ...`
* **Electrical Hazards**
* `- [Hazard 1]: ...`
* **Thermal Hazards**
* `- [Hazard 1]: ...`
* **(And so on for all relevant categories listed in step 2)**
* **Specific Considerations for Human Interaction Points**:
* Highlight hazards particularly relevant at the points mentioned in `{human_interaction_points_text}`.
* **General Recommendations (Brief)**:
* Suggest general next steps
e.g.
'Conduct detailed risk assessment for each identified hazard.'
'Consider hierarchy of controls (elimination
substitution
engineering controls
administrative
PPE).'
**IMPORTANT**: The list should be comprehensive but focused on PLAUSIBLE hazards given the inputs. The AI is not performing a full risk assessment
just identifying potential hazards for further investigation. Encourage a systematic approach.
- Best for: Proactively identifying and categorizing potential safety hazards in manufacturing cell layouts based on equipment processes and human interaction points.
- Evaluación de riesgos y análisis de seguridad
- Ingeniería mecánica
AI Prompt to Mitigation Strategies for Vibration Failures
- Mejora continua, Análisis de fallos, Ingeniería Mecánica, Algoritmos de mantenimiento predictivo, Mejora de procesos, Control de calidad, Gestión de riesgos, Análisis de vibraciones
Suggests and elaborates on potential mitigation strategies for vibration-induced failures in specified mechanical equipment given a summary of vibration data and any current attempts. This helps engineers find solutions to improve reliability. Output is a markdown list.
Salida:
- Markdown
- no requiere Internet en directo
- Fields: {equipment_description_text} {vibration_data_summary_text} {current_mitigation_attempts_text}
Act as a Vibration Analysis and Reliability Engineering Consultant.
Your TASK is to propose and elaborate on potential mitigation strategies for vibration-induced failures in the `{equipment_description_text}`
considering the `{vibration_data_summary_text}` and any `{current_mitigation_attempts_text}`.
You should suggest a range of solutions
from simple to more complex.
**1. Input Analysis**:
* `{equipment_description_text}`: Description of the affected equipment and its function (e.g.
'Centrifugal pump
Model XYZ
used for cooling water circulation'
'Large industrial fan mounted on steel frame'
'Pipeline section experiencing flow-induced vibration').
* `{vibration_data_summary_text}`: Key characteristics of the problematic vibration (e.g.
'High amplitude at 1x rotational speed (unbalance)'
'Dominant frequency matches nearby machine's operating speed (external source)'
'Broadband random vibration with peaks near structural resonances'
'Flow-induced vibration at 50-60 Hz'). Include specific frequencies and amplitudes if known.
* `{current_mitigation_attempts_text}`: What
if anything
has already been tried and its outcome (e.g.
'Attempted balancing
reduced vibration by 20% but still too high'
'Added stiffeners to frame
shifted resonance but problem persists at new frequency'
'None attempted yet').
**2. Mitigation Strategy Brainstorming & Elaboration**: Based on the inputs
propose several distinct strategies. For each strategy:
* **Strategy Name/Type**: (e.g.
Source Modification
Path Interruption
System Modification
Damping Treatment).
* **Specific Action(s)**: Detail the concrete steps or changes involved.
* **Principle of Operation**: Explain HOW this strategy reduces vibration or its effects in the context of the `{vibration_data_summary_text}`.
* **Applicability/Suitability**: How well does this strategy address the likely root cause suggested by the vibration data? (e.g.
If unbalance is indicated
balancing is highly applicable).
* **Potential Pros**: Advantages of this approach.
* **Potential Cons/Challenges**: Disadvantages
cost
complexity
potential side effects.
* **Consideration given `{current_mitigation_attempts_text}`**: How does this build upon or differ from what was already tried?
**Categories of Strategies to Consider (examples
tailor to the problem)**:
* **Source Treatment**:
* Balancing (for rotating machinery).
* Alignment (for coupled machines).
* Modifying operating speed to avoid resonance.
* Reducing fluid flow velocity or changing flow path (for FIV).
* **Path Treatment**:
* Isolation: Using resilient mounts (elastomeric
spring isolators) to decouple the source from the receiver.
* Barriers: Enclosures for noise/vibration.
* **System Response Modification**:
* Stiffening: Adding braces or gussets to shift natural frequencies away from excitation frequencies.
* Mass Addition: Adding mass to shift natural frequencies.
* Damping:
* Applied Damping Treatments (e.g.
viscoelastic layers
constrained layer damping).
* Tuned Mass Dampers (TMDs) for specific problematic frequencies.
* Active Vibration Control (more complex
using sensors
actuators
and controllers).
**3. Output Format (Markdown)**:
* **Title**: Vibration Mitigation Strategies for `{equipment_description_text}`.
* **1. Summary of Vibration Problem**: Briefly restate the core issue based on inputs.
* **2. Proposed Mitigation Strategies**: For each strategy:
* `### Strategy X: [Strategy Name/Type]`
* `**Specific Actions:**`
* `**Principle of Operation:**`
* `**Applicability/Suitability:**`
* `**Potential Pros:**`
* `**Potential Cons/Challenges:**`
* `**Relation to Previous Attempts:**`
* **3. General Recommendations & Next Steps**: Suggest a logical approach to selecting and implementing strategies (e.g.
'Start with source treatment if possible'
'Consider simulation or modal analysis to predict effectiveness of structural modifications'
'Implement incrementally and monitor results').
**IMPORTANT**: The strategies should be technically sound and relevant to the described problem. The AI should aim to provide a range of options suitable for different levels of complexity and cost.
- Best for: Assisting mechanical engineers in identifying and evaluating various mitigation strategies for vibration-induced failures based on equipment type and vibration characteristics.
- Evaluación de riesgos y análisis de seguridad
- Ingeniería mecánica
AI Prompt to Comprobación del cumplimiento de la seguridad en el diseño de máquinas
- Diseño para la fabricación (DfM), Diseño para la sostenibilidad, Evaluación del impacto ambiental, Ergonomía, Seguro de calidad, Control de calidad, Gestión de riesgos, Seguridad
Evalúa las características del diseño de una máquina comparándolas con fragmentos proporcionados por el usuario de las cláusulas pertinentes de las normas de seguridad para identificar posibles áreas de incumplimiento. Esto ayuda a diseñar máquinas más seguras desde el principio. El resultado es una lista de comprobación.
Salida:
- Markdown
- no requiere Internet en directo
- Campos: {machine_design_features_description_text} {safety_standard_clauses_text} {país_de_operación_para_el_contexto}
Act as a Machinery Safety Specialist with expertise in CE Marking/OSHA compliance (or general machinery safety principles).
Your TASK is to perform a preliminary safety compliance check of the described `{machine_design_features_description_text}` against the provided `{safety_standard_clauses_text}`. Consider the general safety expectations for the `{country_of_operation_for_context}` if it influences interpretation (e.g. EU vs USA).
**1. Input Analysis**:
* `{machine_design_features_description_text}`: A textual description of the machine's key design features
safety components (guards
E-stops
interlocks)
operational modes
and human interaction points.
* `{safety_standard_clauses_text}`: Text containing specific clauses or requirements excerpted from relevant safety standard(s) (e.g.
snippets from ISO 12100
ISO 13849-1
IEC 60204-1
or specific Type-C standards). The user provides these excerpts.
* `{country_of_operation_for_context}`: The intended country or region of operation (e.g.
'European Union'
'USA'
'China')
as general safety philosophies can differ.
**2. Compliance Check Methodology**: For EACH provided clause in `{safety_standard_clauses_text}`:
* **Understand Clause Requirement**: Interpret the main safety objective or requirement of the clause.
* **Compare with Design Features**: Assess the `{machine_design_features_description_text}` against this specific requirement.
* Does the design appear to meet the requirement?
* Are there features that clearly violate or contradict the requirement?
* Is there insufficient information in the design description to make a judgment?
* **Identify Potential Gaps or Non-Compliances**: Clearly state where the design may fall short.
* **Suggest Areas for Improvement or Verification**: What specific aspects of the design should be reviewed
modified
or further documented to ensure compliance with this clause?
**3. Output Format (Markdown)**:
* **Title**: Preliminary Safety Compliance Check: [Machine Name/Type from description] vs. Provided Standard Clauses.
* **Context**: Machine intended for operation in: `{country_of_operation_for_context}`.
* **Compliance Checklist**: For each clause provided by the user:
* `---`
* `**Clause Reference:** [Quote or clearly reference the clause from {safety_standard_clauses_text}]`
* `**Clause Summary/Objective:** [Your brief interpretation of what the clause aims to achieve]`
* `**Assessment against Machine Design ({machine_design_features_description_text}):**`
* ` - **Compliance Status:** [Compliant / Potentially Non-Compliant / Insufficient Information / Partially Compliant]`
* ` - **Observations/Reasoning:** [Explain your assessment based on the design features. Be specific.]`
* ` - **Potential Gaps Identified (if any):**`
* ` - Gap 1: ...`
* ` - Gap 2: ...`
* ` - **Recommendations/Questions for Design Team:**`
* ` - Recommendation 1: e.g.
'Verify guard opening sizes against EN ISO 13857 for this hazard zone.'`
* ` - Question 1: e.g.
'Is the emergency stop a Category 0 or Category 1 stop as per IEC 60204-1?'`
* `---`
* **Overall Disclaimer**: `This is a preliminary assessment based SOLELY on the provided design description and standard excerpts. A full compliance assessment requires a detailed review of the complete machine
its documentation
a full risk assessment
and consultation of the complete unabridged standards.`
**IMPORTANT**: The AI is NOT certifying compliance. It is identifying potential areas of concern or questions based on a limited comparison. The assessment should be objective and constructive
aiming to help the design team improve safety. If a clause is very complex or requires deep domain-specific knowledge not available
it's okay to state that a specialist review is needed for that point.
- Ideal para: Facilitar las revisiones de conformidad de seguridad en las primeras fases comprobando las características descritas de la máquina con cláusulas específicas de las normas de seguridad pertinentes proporcionadas por el usuario.
- Consideraciones éticas y análisis de impacto
- Ingeniería mecánica
AI Prompt to Evaluación ética de riesgos en proyectos mecánicos
- Ingeniería ambiental, Impacto ambiental, Ingeniería Mecánica, Gestión de proyectos, Gestión de riesgos, Seguridad, Prácticas de sostenibilidad, Desarrollo sostenible
Este ejercicio guía a la IA para que analice los riesgos éticos y las consecuencias sociales de un proyecto específico de ingeniería mecánica, teniendo en cuenta factores medioambientales, de seguridad y de impacto social. Requiere una descripción detallada del proyecto y la aplicación prevista para proporcionar una evaluación estructurada de los riesgos éticos con recomendaciones de medidas de mitigación.
Salida:
- Texto
- no requiere Internet en directo
- Campos: {descripción_del_proyecto} {aplicación_prevista}
Analyze the following mechanical engineering project for potential ethical risks and societal consequences. The project description is: {project_description}. The intended application is: {intended_application}. Please provide a detailed ethical risk assessment that includes: 1) Identification of possible environmental impacts 2) Safety concerns for users and communities 3) Social and economic consequences 4) Recommendations for mitigating identified risks. Format your response using clear headings and bullet points for each section. Capitalize important keywords and use markdown for readability.
- Lo mejor para: El mejor para evaluar los retos éticos y las repercusiones sociales de los nuevos proyectos de ingeniería mecánica.
- Consideraciones éticas y análisis de impacto
- Ingeniería mecánica
AI Prompt to Generador de informes de sostenibilidad e impacto ambiental
- Ingeniería ambiental, Impacto ambiental, Análisis del ciclo de vida (ACV), Evaluación del impacto del ciclo de vida (EICV), Métricas de sostenibilidad, Desarrollo sostenible, Innovación sostenible, Materiales sostenibles, Prácticas sostenibles
Esta solicitud pide a la IA que genere un informe completo de sostenibilidad e impacto medioambiental para una tecnología o proceso de ingeniería mecánica determinado, teniendo en cuenta el análisis del ciclo de vida, los materiales utilizados y el consumo de energía. El usuario introduce el nombre de la tecnología y los parámetros clave.
Salida:
- Markdown
- no requiere Internet en directo
- Campos: {nombre_tecnología} {parámetros_clave}
Generate a detailed sustainability and environmental impact report for the mechanical engineering technology named {technology_name}. Use the following key parameters to guide your analysis: {key_parameters}. Include sections on: 1) Lifecycle environmental impact including raw materials sourcing and disposal 2) Energy consumption and efficiency 3) Potential for recycling or reuse 4) Recommendations for improving sustainability. Use markdown formatting with headings, bullet points, and bold important terms for clarity.
- Lo mejor para: Lo mejor para elaborar documentación estructurada sobre el impacto ambiental de las innovaciones de ingeniería.
- Consideraciones éticas y análisis de impacto
- Ingeniería mecánica
AI Prompt to Análisis de las implicaciones políticas de las innovaciones mecánicas
- Impacto ambiental, Tecnologías medioambientales, Estrategia de innovación, Gestión de calidad, Reglamento, Gestión de riesgos, Normas, Prácticas de sostenibilidad, Desarrollo sostenible
Esta instrucción pide a la IA que evalúe las implicaciones políticas y normativas de la implantación de una nueva innovación en ingeniería mecánica. El usuario proporciona la descripción de la innovación y la región o el país de destino para adaptar el análisis a la legislación y las normas pertinentes.
Salida:
- Texto
- requiere Internet en directo
- Campos: {innovation_description} {target_region}
Evaluate the policy and regulatory implications of the following mechanical engineering innovation: {innovation_description}. Focus your analysis on the target region or country: {target_region}. Outline existing regulations, standards, and compliance requirements that could affect deployment. Provide recommendations on policy adaptation or lobbying strategies to facilitate innovation adoption. Use numbered lists and clear subheadings to organize your response.
- Lo mejor para: Lo mejor para comprender y navegar por los marcos jurídicos y políticos que afectan a los proyectos de ingeniería mecánica
- Consideraciones éticas y análisis de impacto
- Ingeniería mecánica
AI Prompt to Generador de escenarios de dilemas éticos para ingenieros
- Mejora continua, Diseño para la sostenibilidad, Fundamentos de ingeniería, Impacto ambiental, Diseño centrado en el ser humano, Innovación, Ingeniería Mecánica, Gestión de riesgos
Este ejercicio pide a la IA que cree escenarios realistas de dilemas éticos adaptados específicamente a los ingenieros mecánicos y basados en un tema o tecnología proporcionados. Ayuda a los profesionales a anticipar y debatir situaciones difíciles que requieren una toma de decisiones ética.
Salida:
- JSON
- no requiere Internet en directo
- Campos: {topic}
Generate 3 detailed ethical dilemma scenarios related to the mechanical engineering topic: {topic}. For each scenario, include: 1) A brief description of the situation 2) The conflicting ethical principles involved 3) Potential consequences of different decisions 4) Suggested approaches to resolve the dilemma. Format the output as a JSON array with keys: 'scenario', 'ethical_conflict', 'consequences', and 'resolution'. Capitalize key terms in the text for emphasis.
- Lo mejor para: Lo mejor para formar y preparar a los ingenieros para afrontar retos éticos en su trabajo
- Traducción y adaptación lingüística
- Ingeniería mecánica
AI Prompt to Traducción de especificaciones técnicas
- Documentación de diseño, Diseño para la fabricación (DfM), Fundamentos de ingeniería, Ingeniería Mecánica, Mejora de procesos, Desarrollo de productos, Seguro de calidad, Gestión de calidad
Traduce un bloque de especificaciones técnicas de un componente o sistema mecánico de un idioma de origen a un idioma de destino garantizando la precisión terminológica. Esto facilita la colaboración internacional y la documentación del producto. El resultado es el texto traducido.
Salida:
- Texto
- no requiere Internet en directo
- Campos: {nombre_o_código_del_idioma_de_origen} {nombre_o_código_del_idioma_de_objetivo} {texto_de_las_especificaciones_técnicas}
Act as a Technical Translator specializing in Mechanical Engineering documentation.
Your TASK is to translate the provided `{technical_specifications_text}` from `{source_language_name_or_code}` to `{target_language_name_or_code}`.
You MUST prioritize technical accuracy and the correct translation of specialized mechanical engineering terminology.
**1. Input Parameters**:
* `{source_language_name_or_code}`: The language of the input text (e.g.
'English'
'German'
'zh-CN').
* `{target_language_name_or_code}`: The language into which the text should be translated (e.g.
'Spanish'
'French'
'ja-JP').
* `{technical_specifications_text}`: The block of text containing technical specifications. This may include parameters
material callouts
performance data
testing standards
etc.
**2. Translation Process**:
* **Understand Context**: Parse the `{technical_specifications_text}` to understand the component/system being described.
* **Terminology Management**:
* Identify key technical terms
units of measure
and industry-specific jargon.
* Translate these terms with high fidelity
using established technical equivalents in the `{target_language_name_or_code}`. AVOID literal translations that might be technically incorrect.
* Ensure consistency in terminology throughout the translated text.
* **Preserve Meaning and Structure**:
* Translate not just words
but the precise technical meaning of each specification point.
* Maintain the original formatting (e.g.
bullet points
numbered lists
table-like structures if discernible in plain text) as much as possible in the translated output.
* **Units of Measure**:
* If units are present (e.g.
mm
MPa
kg)
generally retain them as they are
as these are often internationally understood. If conversion is explicitly part of a localization requirement (not requested here but good to be aware of)
that would be a separate instruction. For this task
keep units as in source unless the unit name itself needs translation (e.g.
'pounds' to 'kilograms' is a conversion
but if the word 'pounds' appeared it would be translated if appropriate). Assume standard SI/metric units are preferred if ambiguity arises and context suggests a technical document for global use.
**3. Output**:
* The output MUST be the translated text in the `{target_language_name_or_code}` ONLY.
* Do NOT include any of the original `{technical_specifications_text}` unless it's part of a bilingual presentation format (which is not requested here).
* Do NOT include any comments or annotations unless specifically part of the original text.
**IMPORTANT**: Accuracy is PARAMOUNT. If a term is highly ambiguous and could have multiple technical translations
choose the one most commonly accepted in general mechanical engineering for the `{target_language_name_or_code}`. If you are an AI with limitations in translation quality for very specific jargon
you might add a disclaimer if appropriate
but the primary goal is the best possible technical translation. Strive for a natural-sounding translation in the target language
as if written by a native technical expert.
- Ideal para: Traducir con precisión especificaciones técnicas de componentes mecánicos de un idioma a otro manteniendo la terminología y el significado correctos para su uso internacional.
¿Estamos asumiendo que la IA siempre puede generar las mejores indicaciones en ingeniería mecánica? ¿Cómo se generan?
¿Hará la IA innecesarios a los ingenieros humanos?
Publicaciones relacionadas
101 sobre cómo leer mejor una patente (para un no abogado de patentes)
Los 20 mejores trucos para la búsqueda gratuita de patentes + Bonus
Las mejores indicaciones de IA para ingeniería eléctrica
Directorio de las Mejores Prompts de IA para Ciencia e Ingeniería
The “Dantzig Effect” For Innovation
La metodología SCAMPI para la evaluación CMMI en detalle