A fundamental theorem in Euclidean geometry states that the sum of the measures of the three interior angles of any triangle is always equal to two right angles, or 180 degrees. This property, [latex]\alpha + \beta + \gamma = 180^\circ[/latex], is a direct consequence of the parallel postulate and holds true for all triangles, regardless of their size or shape, within a flat, Euclidean plane.
Triangle Angle Sum Theorem
- Euclid of Alexandria
The proof of the triangle angle sum theorem is a classic example of deductive reasoning in Euclidean geometry and relies critically on the parallel postulate. To prove it, one can draw a line through one vertex of the triangle that is parallel to the opposite side. Because of the properties of parallel lines intersected by a transversal (the other two sides of the triangle), the alternate interior angles are equal. The three angles at the vertex on the straight line—two of which are equal to the other two angles of the triangle—sum to 180 degrees, as they form a straight angle. Therefore, the three interior angles of the triangle must also sum to 180 degrees.
This theorem is a defining characteristic of Euclidean space. In non-Euclidean geometries, this property does not hold. In hyperbolic geometry (with negative curvature, like a saddle), the sum of angles in a triangle is always less than 180 degrees. In elliptic or spherical geometry (with positive curvature, like the surface of a sphere), the sum is always greater than 180 degrees. This makes the angle sum of a triangle a simple test for the nature of the space it inhabits, a concept that became crucial in physics with the advent of general relativity.
النوع
Disruption
الاستخدام
Precursors
- Euclid’s Parallel Postulate
- Concepts of angles and parallel lines from earlier Greek mathematics
- The axiomatic method established in Euclid’s Elements
التطبيقات
- surveying and geodesy for calculating distances and positions
- astronomy for measuring stellar parallax
- architecture for designing stable truss structures
- computer graphics for rendering 3d models
- navigation for plotting courses
براءات الاختراع:
Potential Innovations Ideas
!!مستويات !!! العضوية مطلوبة
يجب أن تكون عضوًا !!! مستويات!!! للوصول إلى هذا المحتوى.
متاح للتحديات الجديدة
مهندس ميكانيكي، مدير مشروع أو بحث وتطوير
متاح لتحدي جديد في غضون مهلة قصيرة.
تواصل معي على LinkedIn
تكامل الإلكترونيات المعدنية والبلاستيكية، التصميم حسب التكلفة، ممارسات التصنيع الجيدة (GMP)، بيئة العمل، الأجهزة والمواد الاستهلاكية متوسطة إلى عالية الحجم، الصناعات الخاضعة للتنظيم، شهادات CE وFDA، التصميم بمساعدة الحاسوب (CAD)، Solidworks، الحزام الأسود Lean Sigma، شهادة ISO 13485 الطبية
احصل على جميع المقالات الجديدة
مجاني، لا يوجد بريد عشوائي، ولا يتم توزيع البريد الإلكتروني ولا إعادة بيعه
أو يمكنك الحصول على عضويتك الكاملة -مجانًا- للوصول إلى جميع المحتويات المحظورة >هنا<
Historical Context
Triangle Angle Sum Theorem
(if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)
Related Invention, Innovation & Technical Principles