The Shockley–Queisser limit is the maximum theoretical efficiency for a single p-n junction solar cell. It considers only radiative recombination and black-body radiation losses. For a single-junction cell with an optimal bandgap of 1.34 eV under standard solar illumination (AM1.5G), the maximum efficiency is approximately 33.7%. This fundamental limit guides solar cell research and design.
Shockley–Queisser Limit
- William Shockley
- Hans-Joachim Queisser
The Shockley–Queisser (SQ) limit, also known as the detailed balance limit, provides a foundational ceiling on the energy conversion efficiency of solar cells. It is derived by analyzing the thermodynamic balance between the energy absorbed from the sun and the energy lost by the cell. The model makes several key assumptions: the cell is a single p-n junction, it operates at a standard temperature (300 K), and it is illuminated by unconcentrated sunlight (AM1.5G spectrum).
The calculation accounts for several unavoidable loss mechanisms. First, photons with energy less than the semiconductor’s bandgap ([latex]E_g[/latex]) pass through the cell without being absorbed, contributing nothing to the current. Second, for photons with energy greater than the bandgap, the excess energy ([latex]E_{photon} – E_g[/latex]) is quickly lost as heat through thermalization, as the excited electron relaxes to the bottom of the conduction band. The voltage is thus limited by the bandgap, not the photon energy. The most significant loss mechanism considered in the SQ limit is radiative recombination. This is the reverse process of absorption, where an electron and hole recombine and emit a photon. In an ideal cell, this is the only recombination pathway. The cell, being at a non-zero temperature, also radiates energy as a black body.
By balancing the incoming photon flux from the sun with the outgoing flux from radiative recombination and black-body radiation, Shockley and Queisser derived the current-voltage characteristic of an ideal cell. The maximum power point on this curve defines the maximum efficiency. The efficiency is a strong function of the bandgap energy, peaking at ~33.7% for a bandgap of 1.34 eV, which is close to that of Gallium Arsenide (GaAs). For silicon ([latex]E_g \approx 1.12[/latex] eV), the limit is around 32%.
النوع
Disruption
الاستخدام
Precursors
- planck’s law of black-body radiation
- einstein’s work on the photoelectric effect and stimulated emission
- semiconductor p-n junction theory
- thermodynamics principles, particularly the second law
التطبيقات
- benchmark for single-junction solar cell performance
- design of multi-junction solar cells to overcome the limit
- research into hot-carrier and upconversion/downconversion solar cells
- economic modeling of solar energy costs
براءات الاختراع:
Potential Innovations Ideas
!!مستويات !!! العضوية مطلوبة
يجب أن تكون عضوًا !!! مستويات!!! للوصول إلى هذا المحتوى.
متاح للتحديات الجديدة
مهندس ميكانيكي، مدير مشروع أو بحث وتطوير
متاح لتحدي جديد في غضون مهلة قصيرة.
تواصل معي على LinkedIn
تكامل الإلكترونيات المعدنية والبلاستيكية، التصميم حسب التكلفة، ممارسات التصنيع الجيدة (GMP)، بيئة العمل، الأجهزة والمواد الاستهلاكية متوسطة إلى عالية الحجم، الصناعات الخاضعة للتنظيم، شهادات CE وFDA، التصميم بمساعدة الحاسوب (CAD)، Solidworks، الحزام الأسود Lean Sigma، شهادة ISO 13485 الطبية
احصل على جميع المقالات الجديدة
مجاني، لا يوجد بريد عشوائي، ولا يتم توزيع البريد الإلكتروني ولا إعادة بيعه
أو يمكنك الحصول على عضويتك الكاملة -مجانًا- للوصول إلى جميع المحتويات المحظورة >هنا<
Historical Context
Shockley–Queisser Limit
(if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)
Related Invention, Innovation & Technical Principles